Рефераты

История и философия науки

Аналоговые модели, которые использовал Максвелл - трубки тока несжимаемой жидкости, вихри в упругой среде, - были теоретическими схемами механики сплошных сред.

Когда связанные с ними уравнения транслировались в электродинамику, механические величины замещались в уравнениях новыми величинами. Такое замещение было возможным благодаря подстановке в аналоговую модель вместо абстрактных объектов механики новых объектов - силовых линий, зарядов, дифференциально малых элементов тока и т.д. Эти объекты Максвелл заимствовал из теоретических схем Кулона, Фарадея, Ампера, схем, которые он обобщал в создаваемой им новой теории. Подстановка в аналоговую модель новых объектов не всегда осознается исследователем, но она осуществляется обязательно. Без этого уравнения не будут иметь нового физического смысла и их нельзя применять в новой области.

Еще раз подчеркнем, что эта подстановка означает, что абстрактные объекты, транслированные из одной системы знаний (в нашем примере из системы знаний об электричестве и магнетизме) соединяются с новой структурой ("сеткой отношений"), заимствованной из другой системы знаний (в данном случае из механики сплошных сред). В результате такого соединения происходит трансформация аналоговой модели. Она превращается в теоретическую схему новой области явлений, схему на первых порах гипотетическую, требующую своего конструктивного обоснования.

55.Неклассический вариант формирование развитой теории.

Стратегии теоретического исследования не являются раз навсегда данными и неизменными. Они исторически меняются по мере эволюции науки.

Начиная со времен Бэкона и Декарта в философии и естествознании бытовало представление о возможности найти строгий, единственно истинный путь познания, который бы в любых ситуациях и по отношению к любым объектам гарантировал формирование истинных теорий. Этот идеал включался в основания классической науки. Он не отрицал изменчивости и многообразия ее конкретных методов, но в качестве цели, которой должен руководствоваться исследователь, провозглашал единую стратегию построения теории. Предполагалось, что вначале необходимо найти очевидные и наглядные принципы, полученные как обобщение опыта, а затем, опираясь на них, находить конкретные теоретические законы.

Эта стратегия полагалась единственно верным путем, методом, который только и приводит к истинной теории.. Применительно к исследованиям физики она требовала создания целостной картины изучаемой реальности как предварительного условия последующего применения математических средств ее описания.

Развитие естествознания XX века заставило пересмотреть эти методологические установки. Критические замечания в адрес классической стратегии исследований начали высказываться уже в конце XIX столетия в связи с обнаружением исторической изменчивости фундаментальных принципов науки, относительности их эмпирического обоснования и наличия конвенциональных элементов при их принятии научным сообществом (эмпириокритицизм, конвенциализм и др.). Выраженные в философии этого исторического периода определенные сомнения в абсолютности классической методологии исследований можно расценить как предварительный этап формирования новой парадигмы теоретического познания. Но сама эта парадигма утвердилась в науке во многом благодаря становлению современной, квантово-релятивистской физики, первой из естественных наук, продемонстрировавшей неклассические стратегии построения теории.

Характеризуя их, известный советский физик академик Л.И.Мандельштам писал: “Классическая физика большей частью шла так, что установление связи математических величин с реальными вещами предшествовало уравнениям, т.е. установлению законов, причем нахождение уравнений составляло главную задачу, ибо содержание величин заранее предполагалось ясным и для них искали уравнения. ...Современная теоретическая физика, не скажу -- сознательно, но исторически так оно и было, пошла по иному пути. Это случилось само собой. Теперь прежде всего стараются угадать математический аппарат, оперирующий величинами, о которых или о части которых заранее вообще не ясно, что они обозначают”.

Этот способ исследований, который стал доминирующим в физике XX столетия, был связан с широким применением особого метода, получившего название математической гипотезы или математической экстраполяции.

Общая характеристика этого метода заключается в следующем. Для отыскания законов новой области явлений берут математические выражения для законов близлежащей области, которые затем трансформируют и обобщают так, чтобы получить новые соотношения между физическими величинами. Полученные соотношения рассматривают в качестве гипотетических уравнений, описывающих новые физические процессы. Указанные уравнения после соответствующей опытной проверки либо приобретают статус теоретических законов, либо отвергаются как несоответствующие опыту.

В приведенной характеристике отмечена главная особенность развития современных физических теорий: в отличие от классических образцов они начинают создаваться как бы с верхних этажей -- с поисков математического аппарата -- и лишь после того, как найдены уравнения теории, начинается этап их интерпретации и эмпирического обоснования. Правда, большего из воспроизведенной характеристики математической гипотезы извлечь, пожалуй, нельзя. Дальнейшая конкретизация этой характеристики требует установить, каким образом формируется в науке математическая гипотеза и в чем заключается процедура ее обоснования.

В этом направлении сделаны пока лишь первые шаги. Прежде всего следует отметить интересные замечания С.И.Вавилова по поводу существования регулятивных принципов (соответствия, простоты и т. д.), которые целенаправляют поиск адекватных математических средств. Особый круг проблем был поставлен автором термина “математическая экстраполяция” С.И.Вавиловым в связи с обсуждением природы корпускулярно-волнового дуализма. Было отмечено, что специфика математической гипотезы как метода современного физического исследования состоит не столько в том, что при создании теории перебрасываются математические средства из одной области в другую (этот метод всегда использовался в физике), сколько в особенностях самой такой переброски на современном этапе.

С.И.Вавилов подчеркивал, что математическая экстраполяция в ее современном варианте возникла потому, что наглядные образы, которые обычно служили опорой для создания математического формализма в классической физике, в настоящее время в квантово-релятивистской физике потеряли целостный и наглядный характер. Картина мира, принятая в современной физике, изображает специфические черты микрообъектов посредством двух дополнительных представлений - корпускулярного и волнового. В связи с этим оказывается невозможным выработать единую наглядную модель физической реальности как предварительную основу для развития теории. Приходится создавать теорию, перенося центр тяжести на чисто математическую работу, связанную с реконструкцией уравнений, “навеянных” теми или иными аналоговыми образами. Именно здесь и кроется необычность математической экстраполяции на современном этапе. “Опыт доводит до сознания отражение областей мира, непривычных и чуждых нормальному человеку. Для наглядной и модельной интерпретации картины не хватает привычных образов, но логика... облеченная в математические формы, остается в силе, устанавливая порядок и связи в новом, необычном мире”.

При таком понимании математической гипотезы сразу же возникает вопрос об ее отношении к картине мира, учитывающей специфику новых объектов. Очевидно, что здесь в неявной форме уже поставлена и проблема эвристической роли картины мира как предварительного основания для поиска адекватных математических средств, применяемых при формулировке физических законов. Весь круг этих проблем нуждается в специальном обсуждении.

57. Модели динамики научного знания в современной философии науки

Важнейшей характеристикой знания является его динамика, т.е. его рост, изменение, развитие и т.п. Эта идея, не такая уж новая, была высказана уже в античной философии, а Гегель сформулировал ее в положении о том, что "истина есть процесс", а не "готовый результат". Однако в западной философии и методологии науки XX в. фактически - особенно в годы "триумфального шествия" логического позитивизма - научное знание исследовалось без учета его роста, изменения.

Развитие знания - сложный диалектический процесс, имеющий определенные качественно различные этапы. Так, этот процесс можно рассматривать как движение от мифа к логосу, от логоса к "преднауке", от "преднауки" к науке, от классической науки к неклассической и далее к постнеклассической и т.п., от незнания к знанию, от неглубокого, неполного к более глубокому и совершенному знанию и т.д.

В современной западной философии проблема роста, развития знания является центральной в философии науки, представленной особенно ярко в таких течениях, как эволюционная (генетическая) эпистемология и постпозитивизм. Эволюционная эпистемология - направление в западной философско-гносеологической мысли, основная задача которого - выявление генезиса и этапов развития познания, его форм и механизмов в эволюционном ключе и, в частности, построение на этой основе теории эволюции науки. Эволюционная эпистемология стремится создать обобщенную теорию развития науки, положив в основу принцип историзма и пытаясь опосредовать крайности рационализма и иррационализма, эмпиризма и рационализма, когнитивного и социального, естествознания и социально-гуманитарных наук и т.д.

Модели:

1) генетическая эпистемология (Ж. Пиаже). В ее основе - принцип возрастания и инвариантности знания под влиянием изменений условий опыта. Генетическая эпистемология Ж. Пиаже пытается объяснить генезис знания вообще, и научного в частности, на основе воздействия внешних факторов развития общества, т.е. социогенеза, а также истории самого знания и особенно психологических механизмов его возникновения. Фундаментальная гипотеза генетической эпистемологии, указывает Пиаже, состоит в том, что существует параллелизм между логической и рациональной организацией знания и соответствующим формирующим психологическим процессом. Соответственно этому он стремится объяснить возникновение знания на основе происхождения представлений и операций, которые в значительной мере, если не целиком, опираются на здравый смысл.

2) Особенно активно проблему роста (развития, изменения) знания разрабатывали, начиная с 60-х гг. XX столетия сторонники постпозитивизма - К. Поппер, Т. Кун, И. Лакатос, П. Фейерабенд, Ст. Тулмин и др. В постпозитивизме происходит существенное изменение проблематики философских исследований: если логический позитивизм основное внимание обращал на анализ структуры научного познания, то постпозитивизм главной своей проблемой делает понимание роста, развития знания. В связи с этим представители поспозитивизма вынуждены были обратиться к изучению истории возникновения, развития и смены научных идей и теорий.

2.1) Первой такой концепцией стала концепция роста знания К. Поппера.

Поппер рассматривает знание не только как готовую, ставшую систему, но также и как систему изменяющуюся, развивающуюся. Рост знания не является повторяющимся или кумулятивным процессом, он есть процесс устранения ошибок, "дарвиновский отбор". Таким образом, рост научного знания состоит в выдвижении смелых гипотез и наилучших (из возможных) теорий и осуществлении их опровержений, в результате чего и решаются научные проблемы. Рост научного знания осуществляется, по его мнению, методом проб и ошибок и есть не что иное, как способ выбора теории в определенной проблемной ситуации - вот что делает науку рациональной и обеспечивает ее прогресс. Поппер указывает на некоторые сложности, трудности и даже реальные опасности для этого процесса. Среди них такие факторы, как, например, отсутствие воображения, неоправданная вера в формализацию и точность, авторитаризм. К необходимым средствам роста науки философ относит такие моменты, как язык, формулирование проблем, появление новых проблемных ситуаций, конкурирующие теории, взаимная критика в процессе дискуссии.

2.2) Общая схема (модель) историко-научного процесса, предложенная Куном, включает в себя два основных этапа:

- "нормальная наука", где безраздельно господствует парадигма,

- "научная революция" - распад парадигмы, конкуренция между альтернативными парадигмами и, наконец, победа одной из них, т.е. переход к новому периоду "нормальной науки".

Научное развитие, по его мнению, подобно развитию биологического мира, представляет собой однонаправленный и необратимый процесс.

2.3) Ст. Тулмин в своей эволюционной эпистемологии рассматривал содержание теорий как своеобразную "популяцию понятий", а общий механизм их развития представил как взаимодействие внутринаучных и вненаучных (социальных) факторов, подчеркивая, однако, решающее значение рациональных компонентов. При этом он предлагал рассматривать не только эволюцию научных теорий, но и проблем, целей, понятий, процедур, методов, научных дисциплин и иных концептуальных структур.

Рациональность научного знания определяется его соответствием стандартам понимания.

2.4) Лакатос рассматривает рост зрелой (развитой) науки как смену ряда непрерывно связанных теорий - притом не отдельных, а серии (совокупности) теорий, за которыми стоит исследовательская программа. Иначе говоря, сравниваются и оцениваются не просто две теории, а теории и их серии, в последовательности, определяемой реализацией исследовательской программы. Фундаментальной единицей оценки должна быть не изолированная теория или совокупность теорий, а "исследовательская программа". Основными этапами в развитии последней, согласно Лакатосу, являются прогресс и регресс, граница этих стадий - "пункт насыщения". Новая программа должна объяснить то, что не могла старая. Смена основных научно-исследовательских программ и есть научная революция.

3) После постпозитивизма развитие эволюционной эпистемологии пошло по двум основным направлениям. Во-первых, по линии так называемой альтернативной модели эволюции (К. Уоддингтон, К. Халквег, К. Хугер и др.) и, во-вторых, по линии синергетического подхода. К. Уоддингтон и его сторонники считали, что их взгляд на эволюцию дает возможность понять, как такие высокоструктурированные системы, как живые организмы, или концептуальные системы, могут посредством управляющих воздействий самоорганизовываться и создавать устойчивый динамический порядок. В свете этого становится более убедительной аналогия между биологической и эпистемологической эволюцией, чем модели развития научного знания, опирающиеся на традиционную теорию эволюции.

Синергетический подход сегодня становится все более перспективным и распространенным, во-первых, потому, что идея самоорганизации лежит в основе прогрессивной эволюции, которая характеризуется возникновением все более сложных и иерархически организованных систем; во-вторых, она позволяет лучше учитывать воздействие социальной среды на развитие научного познания; в-третьих, такой подход свободен от малообоснованного метода "проб и ошибок" в качестве средства решения научных проблем.

В истории науки существует два крайних подхода к анализу динамики, развития научного знания и механизмов этого развития:

- кумулятивизм считает, что развитие знания происходит путем постепенного добавления новых положений к накопленной сумме знаний. Абсолютизируется количественный момент роста, изменения знания, непрерывность этого процесса и исключает возможность качественных изменений, момент прерывности в развитии науки, научные революции. Развитие научного знания - простое постепенное умножение числа накопленных фактов и увеличение степени общности устанавливаемых на этой основе законов.

- антикумулятивизм полагает, что в ходе развития познания не существует каких-либо устойчивых (непрерывных) и сохраняющихся компонентов. Переход от одного этапа эволюции науки к другому связан лишь с пересмотром фундаментальных идей и методов. История науки изображается представителями антикумулятивизма в виде непрекращающейся борьбы и смены теорий и методов, между которыми нет ни логической, ни даже содержательной преемственности.

Объективно процесс развития науки далек от этих крайностей и представляет собой диалектическое взаимодействие количественных и качественных (скачки) изменений научного знания, единство прерывности и непрерывности в его развитии.

58. Традиции в науке, их виды и функции

Впервые вопрос о традиции был поставлен Т. Куном. Действие традиции проявляется в следующих ситуациях:

1) выбор научного языка: понятия - основной инструментарий научного познания, заимствованный из обыденной жизни или предшествующей традиции и неявно задают определенное видение мира. Когда понятия неадекватны, применение понятий тормозит развитие научного знания.

2) Выбор проблемы: несмотря на то, что в выборе проблемы играют роль разные мотивы, здесь действия и роль традиций особенно проявляются в существовании научных школ и направлений.

3) Использование методов: традиции организуют научное сообщество, создавая условия для сопоставимости результатов и дальнейшего обучения.

Классифицировать научные традиции можно по следующим критериям:

1. по способу существования:

- явные;

- неявные - передаются при личных контактах и являются невербальными.

2. по роли в системе науки:

- традиции, задающие способы получения знаний - исторические программы (методики исследования, приборы, образцы решения задач);

- традиции, задающие способы организации знаний - коллекторские программы (указание на объект изучения, принципы классификации, рубрикация дисциплин).

3. по сфере распространения:

- общенаучные;

- специальнонаучные.

Жизнеспособность научных традиций коренится в их дальнейшем развитии последующими поколениями ученых в новых условиях. Роль традиций в развитии науки неоспорима, однако, в некоторых случаях они могут служить ее препятствием, так традиции и новации, взаимодействуя, исключают друг друга.

59. Проблема научных новаций

Новации в науке имеют разный объект исследования:

- создание новых теорий, и возникновение новых научных дисциплин;

- построение новой классификации или периодизации, постановка новых проблем, разработка новых экспериментальных методов исследования или новых способов изображения;

- обнаружение новых явлений;

- введение новых понятий и новых терминов.

Все новации можно разбить на несколько групп в зависимости от того, с изменением каких наукообразующих программ они связаны:

- изменение исследовательских программ, включая сюда создание новых методов и средств исследования;

- изменение программ коллекторских, т.е. о постановке новых вопросов, об открытии или выделении новых явлений (новых объектов референции), о появлении новых способов систематизации знания;

- «повседневно научные», которые осуществляются в рамках существующих программ, ничего в них не меняя по существу, это, в частности, повседневное накопление знаний.

Исследовательские новации - это появление новых методов, коллекторские - открытие новых миров, новых объектов исследования. Оба типа новаций могут приводить к существенным сдвигам в развитии науки и воспринимаются в этом случае как революции. Факты свидетельствуют, что эти новации тесно связаны друг с другом, что иллюстрирует и связь исследовательских и коллекторских программ.

Новые методы, как отмечают сами ученые, часто приводят к далеко идущим

последствиям - и к смене проблем, и к смене стандартов научной работы, и к

появлению новых областей знания. Укажем хотя бы очевидные примеры:

появление микроскопа в биологии, оптического телескопа и радиотелескопа в астрономии.

Классы новаций:

- преднамеренные - результат целенаправленных акций;

- непреднамеренные - побочным образ этих акций.

Первые, согласно Куну, происходят в рамках парадигмы, вторые - ведут к ее изменению.

Преднамеренные связаны с преодолением незнания. Незнание - это область нашего целеполагания, область планирования нашей познавательной деятельности. Строго говоря, - это явная или неявная традиция, использующая уже накопленные знания в функции образцов. На этом уровне ученый способен сформулировать вопрос и попытаться найти пути его решения.

Непреднамеренные же новации связаны с преодолением неведения. В этом случае новые результаты появляются в русле 2-х концепций - концепции «пришельцев» и концепции побочных результатов исследования.

Концепция "пришельцев" имеет 2 варианта:

- в данную науку приходит человек из другой области, человек, не связанный традициями этой науки, и делает то, что никак не могли сделать другие.

- "пришелец" принес с собой в новую область исследований какие-то методы или подходы, которые в ней отсутствовали, но помогают по-новому поставить или решить проблемы.

Но если в первом случае для нас важна личность ученого, освободившегося от догм и способного к творчеству, то во втором - решающее значение приобретают те методы, которыми он владеет, те традиции работы, которые он с собой принес, сочетаемость, совместимость этих методов и традиций с атмосферой той области знания, куда они перенесены.

Концепция побочных результатов.

Выделение и осознание случайных побочных результатов происходит по 2-м путям:

- существенно связано с наличием традиций, которым эти результаты противоречат. Традиции как бы отвергают эти результаты, они не способны их ассимилировать, и именно поэтому случайные феномены оказываются вдруг в центре внимания.

- результат, непреднамеренно полученный в рамках одной из традиций, оказывается существенным для другой.

Таким образом, любые новации возможны благодаря взаимодействию традиций. Именно плюрализм традиций способствует повышению вероятности новых открытий.

60. Научные революции, их сущность и типология

По мере своего развития наука может столкнуться с принципиально новыми типами объектов, которые могут потребовать и изменения схемы метода познавательной деятельности, представленной системой идеалов и норм исследования. В этой ситуации рост научного знания предполагает перестройку оснований науки. Последняя может осуществляться в двух разновидностях:

а) как революция, связанная с трансформацией специальной картины мира без существенных изменений идеалов и норм исследования;

б) как революция, в период которой вместе с картиной мира радикально меняются идеалы и нормы науки и ее философские основания.

Т.о. научная революция - новации, отличающиеся следующими признаками:

1) связаны не с изменением отдельных теорий, а с перестроением оснований науки;

2) имеют мировоззренческое значение и приводят к изменению стиля мышления;

3) во время революции происходит взаимодействие традиций и новаций внутренних и внешних факторов.

Парадигма - это система норм, теории, методов, фундаментальных фактов и образцов деятельности, которые признаются и разделяются всеми членами данного научного сообщества как логического субъекта научной деятельности. Она выполняет две функции - запретительную и проективную. С одной стороны, она запрещает все, что не относится к данной парадигме и не согласуется с ней, с другой - стимулирует исследования в определенном направлении.

Научная революция наступает, когда создаются новые парадигмы, оспаривающие первенство друг у друга. Они создаются, как правило, учеными-аутсайдерами, стоящими вне "школы", и их активной деятельностью по пропаганде своих идей. Процесс научной революции оказывается у Куна процессом скачкообразного отбора посредством конфликта научных сообществ, сплоченных единым "взглядом на мир". Чистым результатом такого отбора является, по словам Куна, удивительно приспособленный набор инструментов, который мы называем современным научным знанием. Кризис разрешается победой одной из парадигм, что знаменует начало нового "нормального" периода, создается новое научное сообщество ученых с новым видением мира, новой парадигмой.

Сущность научных революций, по Куну, заключается в возникновении новых парадигм, полностью несовместимых и несоизмеримых с прежними. Он стремится подтвердить это ссылкой на якобы несоизмеримость квантовой и классической механики. При переходе к новой парадигме, по мнению Куна, ученый как бы переселяется в другой мир, в котором действует и новая система чувственного восприятия (например, там где схоласты видели груз, раскачивающийся на цепочке, Галилей увидел маятник). Одновременно с этим возникает и новый язык, несоизмеримый с прежним (например, понятие массы и длинны в классической механике и СТО Эйнштейна).

Классификация научных революций:

1) по содержанию новаций:

1.1) внедрение новых методов - появление новых фундаментальных теорий является самой очевидной причиной научных революций. Фундаментальные теории нацелены на разработку основопологающих научных принципов и связаны с решением мировоззренческих проблем;

1.2) построение новых теорий - стимулируют появление новых проблем, стандартов исследования или новых областей применения;

1.3) открытие новых миров - применяется весь арсенал накопленных средств, которые адаптируются к реальности и приводят к появлению новых дисциплин.

2) по сфере возникновения новизны:

2.1) внутрипарадигмальные - новые методы, идеи и философские предпосылки изменения основания науки. Парадоксы разрешаются путем построения принципиально новых теорий. Выработка методов и идеи - длительный процесс, в начальной стадии не вступающий в оппозицию к прежнему стилю мышления, а создавая почву для идеи, которые постепенно укореняются в мировоззрении для принятия новой научной парадигмы;

2.2) межпарадигмальные - представления одной парадигмы переносятся в другую. При таком переносе становится очевидным противоречие между картиной мира (КМ) и спецификой новаций (формируется общая КМ).

3) по отношению к науке:

3.1) внутренние - связанные с развитием самой науки (1.1-1.3 и 2.1-2.2);

3.2) внешние.

61. Механизмы революционных изменений в науке

В динамике научного знания особое значение имеют этапы развития, связанные с перестройкой исследовательских стратегий, задаваемых основаниями науки.

По мере своего развития наука может столкнуться с принципиально новыми типами объектов. Их исследование требует иного видения реальности по сравнению с тем, которое предполагает сложившаяся картина мира. «Новые объекты могут потребовать и изменения схемы метода познавательной деятельности, представленной системой идеалов и норм исследования. В этой ситуации рост научного знания предполагает перестройку оснований науки. Последняя может осуществляться в двух разновидностях: а) как революция, связанная с трансформацией специальной картины мира без существенных изменений идеалов и норм исследования; б) как революция, в период которой вместе с картиной мира радикально меняются идеалы и нормы науки и ее философские основания». Парадоксы и проблемные ситуации являются предпосылками научной революции и сигналом того, что наука втянула в сферу своего исследования новый тип процессов, существенные характеристики которых не были отражены в картине мира.

По мнению В.С. Стёпина «новая картина мира не может быть получена из нового эмпирического материала чисто индуктивным путем. Сам этот материал организуется и объясняется в соответствии с некоторыми способами его видения, а этот способ задает картина мира. Поэтому эмпирический материал может лишь обнаружить несоответствие старого видения новой реальности, но сам по себе он еще не указывает, как нужно изменить это видение. Формирование новой картины мира требует особых идей, которые позволяют перегруппировать элементы старых представлений о реальности, отсеять часть из них, включить новые элементы с тем, чтобы разрешить имеющиеся парадоксы, обобщить и объяснить накопленные факты. Такие идеи формируются в сфере философско-методологического анализа познавательных ситуаций науки и играют роль весьма общей эвристики, обеспечивающей интенсивное развитие исследований».

Выработка методологических принципов, выражающих новые нормы научного познания, представляет собой не одноразовый акт, а довольно сложный процесс, в ходе которого развивается и конкретизируется исходное содержание методологических принципов. Первоначально они могут не выступать в качестве альтернативы традиционному способу исследования. Только по мере развития система этих принципов всё отчетливее предстаёт как оппозиция старому стилю мышления.

В.С. Стёпин считает, что «необходимость критического отношения к принятым в классическом естествознании (XVII-XIX века - А.В.) идеалам и нормам раньше всего была уловлена и начала осмысливаться в философии». Выход в сферу философских средств и применение их в проблемных ситуациях естествознания позволили видоизменить идеалы объяснения и обоснования знаний, утвердить новый метод построения картины мира и связанных с нею фундаментальных научных теорий.

Утверждение в физике новой картины исследуемой реальности (конец XIX-начало XX века) сопровождалось дискуссиями философско-методологического характера. В ходе их осмысливались и обосновывались новые представления о пространстве и времени, новые методы формирования теории. В процессе этого анализа уточнялись и развивались философские предпосылки, которые обеспечивали перестройку классических идеалов и норм исследования существующей тогда электродинамической картины мира. В ходе этого они (философские предпосылки) превращались в философские основания релятивистской физики и во многом способствовали её интеграции в ткань современной культуры.

Таким образом, перестройка оснований науки представляет собой процесс, который начинается задолго до непосредственного преобразования норм исследования и научной картины мира. Это положение В.С. Стёпин формулирует на основании обстоятельного анализа появления теории относительности.

Любой научной революции предшествует интеллектуальная анархия, соперничество различных теорий. Научные революции предполагают реформирование самого способа мышления.

В.С. Стёпин указывает также на несколько иной вариант возникновения научных революций. По его мнению, «научные революции возможны не только как результат внутридисциплинарного развития, когда в сферу исследования включаются новые типы объектов, освоение которых требует изменения оснований научной дисциплины. Они возможны также благодаря междисциплинарным взаимодействиям, основанным на “парадигмальных прививках”, т.е. на переносе представлений специальной научной картины мира, идеалов и норм исследования из одной научной дисциплины в другую». Новая картина исследуемой реальности и новые нормы познавательной деятельности, утверждаясь в конкретной науке, могут оказать революционизирующее воздействие на другие науки.

Такой путь научных революций, как отмечает В.С. Стёпин, не описан с достаточной глубиной ни Т. Куном, ни другими западными исследователями философии науки. Между тем он является ключевым для понимания процессов возникновения и развития многих научных дисциплин.

В этом отношении характерным примером является перенос из физики в химию фундаментального принципа, согласно которому процессы преобразования молекул, изучаемые в химии, могут быть представлены как взаимодействия ядер и электронов, в результате чего химические системы можно описать как квантовые системы, характеризующиеся определенной ш-функцией. Эта идея легла в основу нового направления - квантовой химии. Возникновение её знаменовало революцию в современной химической науке и появление в ней принципиально новых стратегий исследования.

Итак, «общая научная картина мира может быть рассмотрена как такая форма знания, которая регулирует постановку фундаментальных научных проблем и целенаправляет трансляцию представлений и принципов из одной науки в другую. Иначе говоря, она функционирует как глобальная исследовательская программа науки, на основе которой формируются ее более конкретные, дисциплинарные исследовательские программы».

В.С. Стёпин справедливо отмечает, что «процесс утверждения в науке её новых оснований определен не только предсказанием новых фактов и генерацией конкретных теоретических моделей, но и причинами социокультурного характера. Новые познавательные установки и генерированные ими знания должны быть вписаны в культуру соответствующей исторической эпохи и согласованы с лежащими в её фундаменте ценностями и мировоззренческими структурами».

Ускорение общего хода научно-технического развития в целом и динамика исследований по каким-либо конкретным проблемам зависят в основном от порожденных эпохой и наукой в целом проблем, потребностей и новых возможностей. А возможности, направление и интенсивность прорывов в некоторых научных направлениях во многом зависят от количественного соотношения творческих личностей, от их психологической индивидуальности, от сформированных их генами, воспитанием и социальными условиями качеств, таких как, например, независимость мышления, готовность к восприятию новых взглядов и категорий и к сомнению в прежних, даже в своих собственных.

62. ПРЕЕМСТВЕННОСТЬ В РАЗВИТИИ НАУЧНЫХ ЗНАНИЙ

Данная закономерность выражает неразрывность всего познания действительности как внутренне единого процесса смены идей, принципов, теорий, понятий, методов научного исследования. При этом каждая более высокая ступень в развитии науки возникает на основе предшествующей ступени с удержанием всего ценного, что было накоплено раньше, на предшествующих ступенях.

Объективной основой преемственности в науке является то реальное обстоятельство, что в самой действительности имеет место поступательное развитие предметов и явлений, вызываемое внутренне присущими им противоречиями. Воспроизведение реально развивающихся объектов, осуществляемое в процессе познания, также происходит через диалектически отрицающие друг друга теории, концепции и другие формы знания. В этом процессе содержание отрицаемых знаний не отбрасывается полностью, а сохраняется в новых концепциях в "снятом" виде, с удержанием положительного. Новые теории не отрицают полностью старые, потому что последние с определенной степенью приближения отображают объективные закономерности действительности в своей предметной области. История науки показала, что, например, "...в физике более поздние этапы ее развития вовсе не сводят к нулю значение более ранних стадий, а лишь указывают границы применимости этих более ранних стадий, включая их как предельные случаи в более широкую систему новой физики".

Диалектическое отношение новой и старой теории в науке нашло свое обобщенное отражение в принципе соответствия, впервые сформулированном Нильсом Бором. Согласно данному принципу, смена одной частнонаучной теории другой обнаруживает не только различия, но и связь, преемственность между ними. Новая теория, приходящая на смену старой, в определенной форме - а именно в качестве предельного случая - удерживает ее. Так, например, обстояло дело в соотношении "классическая механика - квантовая механика". При этом новая теория выявляет как достоинства, так и ограниченность старой теории и позволяет оценить старые понятия с более глубокой точки зрения.

Философско-методологическое значение принципа соответствия состоит в том, что он выражает диалектику процесса познания, перехода от относительных истин к абсолютной, преемственность в развитии знания, диалектическое отрицание старых истин, теорий, методов новыми. Причем теории, истинность которых установлена для определенной группы явлений, с построением новой теории не отбрасываются, не утрачивают свою ценность, но сохраняют свое значение для прежней области знаний как предельное выражение законов новых теорий. Вот почему успешно строить новый мир идей и знаний можно, лишь бережно сохраняя все истинное, ценное, оправдавшее себя в старых теоретических концепциях.

В процессе развития научного познания возможен обратный переход от последующей теории к предыдущей, их совпадение в некоторой предельной области, где различия между ними оказываются несущественными. Например, законы квантовой механики переходят в законы классической при условии, когда можно пренебречь величиной кванта действия, а законы теории относительности переходят в законы классической механики при условии, если скорость света считать бесконечной.

Таким образом, любая теория должна переходить в предыдущую менее общую теорию в тех условиях, в каких эта предыдущая была установлена. Поэтому-то "ошеломляющие идеи" теории относительности, совершившие переворот в методах физического познания, не отменили механики Ньютона, а лишь указали границы ее применимости.

На каждом этапе своего развития наука использует фактический материал, методы исследования, теории, гипотезы, законы, научные понятия предшествующих эпох и по своему содержанию является их продолжением. Поэтому в каждый определенный исторический период развитие науки зависит не только от достигнутого уровня развития производства и социальных условий, но и от накопленного ранее запаса научных истин, выработанной системы понятий и представлений, обобщившей предшествующий опыт и знания.

Важный аспект преемственного развития науки состоит в том, что всегда необходимо распространять истинные идеи за рамки того, на чем они опробованы. Подчеркивая это обстоятельство, крупный американский физик-теоретик Р. Фейнман писал: "Мы просто обязаны, мы вынуждены распространять все то, что мы уже знаем, на как можно более широкие области, за пределы уже постигнутого... Это единственный путь прогресса. Хотя этот путь неясен, только на нем наука оказывается плодотворной".

Таким образом, каждый шаг науки подготавливается предшествующим этапом и каждый ее последующий этап закономерно связан с предыдущим. Заимствуя достижения предшествующей эпохи, наука непрерывно движется дальше. Однако это не есть механическое, некритическое заимствование; преемственность не есть простое перенесение старых идей в новую эпоху, пассивное заимствование полностью всего содержания используемых теорий, гипотез, методов исследования. Она обязательно включает в себя момент критического анализа и творческого преобразования. Преемственность представляет собой органическое единство дух моментов: наследования и критической переработки. Только осмысливая и критически перерабатывая знания предшественников, ученый может развивать науку, сохраняя и приумножая истинные знания и преодолевая заблуждения.

Процесс преемственности в науке (но не только в ней) может быть выражен в терминах "традиция" (старое) и "новация" (новое). Это две противоположных диалектически связанные стороны единого процесса развития науки: новации вырастают из традиций, находятся в них в зародыше; все положительное и ценное, что было в традициях, в "снятом виде" остается в новациях.

Новация (в самом широком смысле) - это все то, что возникло впервые, чего не было раньше. Характерный пример новаций - научные открытия, фундаментальные, "сумасшедшие" идеи и концепции - квантовая механика, теория относительности, синергетика и т.п. Формулируя новые научные идеи, "мы должны проверять старые идеи, старые теории, хотя они и принадлежат прошлому, ибо это - единственное средство понять значительность новых идей и пределы их справедливости".

Традиции в науке - знания, накопленные предшествующими поколениями ученых, передающиеся последующим поколениям и сохраняющиеся в конкретных научных сообществах, научных школах, направлениях, отдельных науках и научных дисциплинах. Множественность традиций дает возможность выбора новым поколениям исследователей тех или иных из них. А они могут быть как позитивными (что и как воспринимается), так и негативными (что и как отвергается). Жизнеспособность научных традиций коренится в их дальнейшем развитии последующими поколениями ученых в новых условиях.

63. Единство количественных и качественных изменений в развитии науки

Преемственность научного познания не есть однообразный, монотонный процесс. Обычно она выступает как единство постепенных, спокойных количественных и коренных, качественных (скачки, научные революции) изменений. Эти две стороны науки тесно связаны и в ходе ее развития сменяют друг друга как своеобразные этапы данного процесса.

В развитии науки "эпохи относительной стабильности отделены друг от друга краткими периодами кризисов, во время которых под давлением фактов, ранее малоизвестных или вовсе неизвестных, ученые вдруг ставят под сомнение все принципы, казавшиеся до этого вполне незыблемыми, и через несколько лет находят совершенно новые пути. Такие неожиданные повороты всегда характеризуют решающие этапы в прогрессивном развитии наших знаний". Этап количественных изменений науки - это постепенное накопление новых фактов, наблюдений, экспериментальных данных в рамках существующих научных концепций. В связи с этим идет процесс расширения, уточнения уже сформулированных теорий, понятий и принципов.

На определенном этапе этого процесса и в конкретной его "точке" происходит прерыв непрерывности, скачок, коренная ломка фундаментальных законов и принципов вследствие того, что они не объясняют новых фактов и новых открытий. Это и есть коренные качественные изменения в развитии науки, т.е. научные революции.

Во время относительно устойчивого развития науки происходит постепенный рост знания, но основные теоретические представления остаются почти без изменений. В период научной революции подвергаются ломке именно эти представления. Революция в той или иной науке представляет собой период коренной ломки основных, фундаментальных концепций, считавшихся ранее незыблемыми, период наиболее интенсивного развития, проникновения в область неизвестного, скачкообразного углубления и расширения сферы познанного.

Примерами таких революций являются создание гелиоцентрической системы мира (Коперник), формирование классической механики и экспериментального естествознания (Галилей, Кеплер и особенно Ньютон), революция в естествознании конца XIX - начала XX в. - возникновение теории относительности и квантовой механики (А. Эйнштейн, М. Планк, Н. Бор, В. Гейзенберг и др.). Крупные изменения происходят в современной науке, особенно связанные с формированием и бурным развитием синергетики (теории самоорганизации целостных развивающихся систем), электроники, генной инженерии и т.п. Научная революция подводит итог предшествующему периоду познания, поднимает его на новую, высшую ступень. Очищая науку от заблуждений, она открывает новые объекты и методы исследования, ускоряя тем самым темпы развития науки.

Страницы: 1, 2, 3, 4, 5, 6, 7


© 2010 Реферат Live