Рефераты

Разработка системы управления асинхронным двигателем с детальной разработкой программ при различных законах управления

Разработка системы управления асинхронным двигателем с детальной разработкой программ при различных законах управления

МIНIСТЕРСТВО ОСВIТИ УКРАЇНИ

Державна Гiрнича Академiя України

Кафедра Автоматизацiї виробничiх процесiв

ПОЯСНЮВАЛЬНА

ЗАПИСКА

ДО ДИПЛОМНОГО ПРОЕКТУ

На тему: "Розробка системи керування асiнхронним

двигуном с детальним розробленням

программ при рiзних законах управлiння"

Студент групи АТс-92 Казначеєв В’ячеслав Сергiйович

Керiвник проекту: Соседка В.Л. ________________

Консультанти: Пацера С.Т. ________________

Мiрошник Г.А. ________________

Шереметьєва I.В. ________________

Завiдуючий кафедрою проф. Ткачев В.В. ________________

Днiпропетровськ

1997

РЕФЕРАТ

Дипломный проект стр. , рис. , табл.

Проектирование системы, система управления, асинхронный двигатель, закон

управления, цифровой сигнал, реализация, интегральная микросхема,

переходный процесс, расчет.

Описан объект автоматического управления - асинхронный двигатель.

Цель работы- разработка системы управления асинхронным двигателем с

разработкой программы при различных законах управления. Выполнен обзор

существующих схем управления и сформулированы технические требования к

системе. Показано, что частотное управление асинхронным двигателем не

удовлетворяет требованиям, в связи с чем предложено применить закон

управления напряжением двигателя в функции частоты и нагрузки,

обеспечивающих снижение потерь в двигателе, предложенный М. П. Костенко.

Разработана функциональная схема системы управления, использующая цифровые

сигналы.

Выполнено проектирование системы - разработана принципиальная схема и

печатная плата системы управления асинхронным двигателем при помощи

интерфейса RS-232C. Рассчитана максимально возможная скорость передачи

данных в канале связи. Разработан протокол обмена и программа верхнего

уровня, моделирующая работу двигателя при различных законах управления.

Предприняты меры по обеспечению безопасности при работе с объектом

упраления.

Определена плановая стоимость разработки и плановая прибыль.

СОДЕРЖАНИЕ

Введение

1. Состояние вопроса и постановка задачи

1.1. Общие сведения об асинхронных двигателях

1.2. Техническое описание системы

1.3. Анализ существующих средств автоматизации

1.4. Обоснование структуры системы автоматического управления

2. Техническое задание

2.1. Наименование и область применения

2.2. Основание для проведения разработки

2.3. Цель и назначение разработки

2.4. Требования к системе

2.4.1. Требования к комплексу решаемых задач

2.4.2. Нижний уровень

2.4.3. Верхний уровень

2.4.4. Требования к надежности

2.4.5. Требования к безопасности

2.4.6. Требования к эргономике и технической

эстетике

2.4.7. Требования к эксплуатации, техническому

обслуживанию, ремонту и хранению компонентов

системы

2.4.8. Требования к защите информации от

несанкционированного доступа

2.4.9. Требования по сохранности информации при

авариях

2.4.10. Требования к защите от влияния внешних

воздействий

2.5. Требования к видам обеспечения

2.5.1. Требования к математическому обеспечению

2.5.2. Требования к информационному обеспечению

2.5.3. Требования к лингвистическому обеспечению

2.5.4. Требования к программному обеспечению

2.5.5. Требования к техническому обеспечению

3. Специальная часть

3.1. Выбор технических средств

3.2. Разработка структурной схемы

3.3. Разработка функциональной схемы

3.3.1. Блок центрального процессора

3.3.2. Блок ввода и преобразования аналоговых

сигналов

3.3.3. Блок ввода-вывода дискретных сигналов

3.3.4. Математическое описание асинхронного

двигателя

3.4. Проектирование робота

3.4.1. Постановка задачи

3.4.2. Исходные данные

3.4.3. Основные понятия и определения

3.4.4. Метод матриц в кинематике манипуляторов

3.4.5. Выбор систем координат

3.4.6. Расширенная матрица перехода для

кинематической пары

3.4.7. Решение прямой задачи кинематики

3.4.8. Решение обратной задачи кинематики

3.4.9. Проверка решения

3.5. Технические средства автоматизации систем управления гибких

автоматизированных производств

3.5.1. Выбор системы координат станка, детали и

инструмента

3.5.2. Выбор типовых переходов операций сверления

3.5.3. Кодирование управляющей программы

процесса сверления

3.6. Связь контроллера с ЭВМ верхнего уровня

3.6.1. Схема гальванической развязки

приемопередатчика микроконтроллера

3.6.2. Интерфейс последовательного канала связи

ЭВМ с контроллером

3.6.3. Организация обмена по последовательному

каналу

3.6.4. Расчет формы сигнала в линии связи и

скорости обмена

3.7. Теория автоматического управления

4. Конструкторско-технологическая часть

4.1. Общие технические требования к печатной плате

4.2. Основные принципы конструирования печатных плат

4.3. Технология изготовления платы

5. Экономическая часть

5.1. Расчет плановой себестоимости

5.2. Определение договорной цены НИР и плановой

прибыли

6. Охрана труда

6.1. Анализ условий труда, опасных и вредных

производственных факторов

6.2. Выбор и обоснование мероприятий для создания

безопасных условий труда

6.3. Инструкция по охране труда при монтаже и

эксплуатации системы

6.4. Расчет искусственного освещения

6.5. Противопожарная защита

Заключение

Список литературы

Приложения

ВВЕДЕНИЕ

Автоматизация производства на основе микроэлектронной техники для

развития и совершенствования существующих и создающихся технологических

производств, является одним из важных направлений производства.

Особенностью современного этапа развития автоматизации производства

является появление и массовое применение качественно новых технических

средств, изготовление сетей на базе микроэлектроники. Внедрение

автоматизированных систем управления технологическими процессами (АСУ ТП)

приобретает особое значение в связи с ростом требований к скорости

вычисления, переработки и выдачи информации. Поэтому разработка и

исследование структур и режимов функционирования АСУ ТП на основе микроЭВМ

является актуальной задачей. Использование микроЭВМ позволяет на порядок

снизить затраты, обеспечивает повышение эффективности и расширение

функциональных возможностей.

Одно из основных положений автоматизации процессов организационного

управления заключается в создании безбумажной технологии обработки

информации.

Программное обеспечение систем с персональными микроЭВМ выгодно

отличается своей простотой, проблемной направленностью.

Основной, определяющей целью управления оборудованием,

технологическими и производственными процессами с помощью АСУ ТП является

повышение производительности труда, улучшение качества продукции и

использования материально-сырьевых и топливно-энергетических ресурсов.

Дальнейшее совершенствование АСУ ТП связано с повышением их экономической

эффективности путем индустриального создания автоматизированных

технологических комплексов с АСУ ТП.

Одним из существенных препятствий на пути индустриализации создания

АСУ ТП являются традиционные методы (трудоемкие) программирования ЭВМ и

недостаточная адаптивность типовых АСУ ТП к более широкому кругу условий

работы объектов управления. Преодолеть эти препятствия для предприятий,

самостоятельно внедряющих АСУ ТП можно, во-первых, передачей значительной

степени программного обеспечения из универсальных ОЗУ в ПЗУ

микропроцессорных функциональных блоков, из которых и следует формировать

логическую и вычислительную часть АСУ ТП, т. е. передачей задач

традиционного программирования в область массового производства устройств

электронной техники; во-вторых, развитием специализированных операционных

систем АСУ ТП, обладающих широкими возможностями к адаптации и работающими

с микропроцессорными функциональными блоками; в-третьих, созданием

программно-аппаратурных средств реализации диалоговых режимов настройки и

работы АСУ ТП.

Уровень автоматизации производственных процессов, производительность

труда и качество выпускаемой продукции определяется силовой

электровооруженностью труда, основу которой составляют регулируемые

электрические машины.

Целью настоящего дипломного проекта является разработка

автоматической системы регулирования электропривода с мощным высоковольтным

короткозамкнутым асинхронным двигателем c детальной разработкой программ

для управляющей ЭВМ верхнего уровня.

1. СОСТОЯНИЕ ВОПРОСА И ПОСТАНОВКА ЗАДАЧИ

1.1 Общие сведения

В силу своих конструктивных особенностей асинхронная машина лишена

ряда недостатков, присущих машинам постоянного тока. В частности,

отсутствие коллектора и щеток в асинхронном короткозамкнутом двигателе (АД)

обуславливает большую предельную единичную мощность, лучшие весо-габаритные

показатели, более высокую перегрузочную способность и допустимую скорость

изменения момента, более высокие скорости вращения, чем машины постоянного

тока. Известно, что преимущества АД наиболее полно реализуются при

частотном управлении, что обуславливает постоянное вытеснение регулируемого

электропривода постоянного тока частотно-регулируемым асинхронным

электроприводом во всех отраслях промышленности.

В настоящее время около половины вырабатываемой электроэнергии

потребляется нерегулируемыми двигателями переменного тока, среди которых

значительную часть составляют мощные высоковольтные АД. Регулирование

скорости мощных высоковольтных АД, исключение режимов прямых пусков -

эффективные факторы повышения производительности рабочих механизмов,

снижения эксплуатационных расходов, экономии электроэнергии. Рабочими

механизмами мощных высоковольтных электроприводов являются: подъемники

горной и металлургической промышленности, вентиляторы, насосы, газодувки,

компрессоры горной, металлургической, химической промышленности, атомной

энергетики.

С разработкой и освоением серийного производства мощных силовых

полупроводниковых приборов появилась возможность широкого применения мощных

высоковольтных преобразователей частоты (ПЧ) для питания обмоток

высоковольтных АД. Таким образом, появилась возможность создания

регулируемых по скорости мощных высоковольтных асинхронных электроприводов.

Известно, что механические и динамические характеристики,

энергетические показатели АД в частотно-регулируемом электроприводе

определяются: принятым законом частотного управления, способом частотного

управления, алгоритмической и аппаратной реализацией автоматической системы

регулирования (АСР) электропривода.

Несмотря на большое количество разработанных и исследованных структур

АСР для низковольтных электроприводов, применение их для мощных

высоковольтных электроприводов не представляется возможным. Это связано с

особенностями высоковольтного электропривода, а именно:

. значительным усложнением непосредственного измерения параметров

электропривода;

. условием минимальной асимметрии питающих токов, вытекающей из требования

к повышенной энергетике электропривода;

. применением трехфазного двухобмоточного АД, питающегося от

двухсекционного преобразователя частоты, вытекающим из условия улучшенных

энергетических, регулировочных свойств и способа наращивания выходной

мощности.

Кроме перечисленных особенностей необходимо отметить, что

значительная часть высоковольтных АД рассчитана на высокие скорости

вращения (6000 об/мин и выше), что исключает возможность применения

вращающихся на валу АД датчиков.

Таким образом, на основании анализа приведенных законов, способов,

технических устройств частотного управления асинхронными электроприводами,

можно сделать следующие выводы.

1. Для мощных высоковольтных электроприводов механизмов, работающих с

постоянным моментом сопротивления на валу с частыми пускотормозными

режимами, целесообразно применение закона частотного управления с

постоянством потокосцепления ротора, отличающегося наивысшей

перегрузочной способностью и обеспечивающего наилучшие динамические

свойства двигателя.

2. Для мощных высоковольтных электроприводов механизмов, работающих с

вентиляторным моментом сопротивления на валу, благодаря своим высоким

энергетическим показателем и простоте технической реализации

целесообразно использовать закон частотного управления по минимуму

потерь.

3. В силу своих преимуществ по сравнению с другими способами частотного

управления, а именно: простоте технической реализации (по сравнению с

векторными способами) и лучшими динамическими и статическими показателями

(по сравнению с амплитудными способами) предпочтителен квазивекторный

способ частотного управления.

4. Для наращивания мощности электропривода и одновременного повышения его

энергетических показателей, используются трехфазные двухобмоточные

двигатели с пространственным сдвигом между трехфазными статорными

обмотками, питающимися от двух трехфазных преобразователей частоты токами

(напряжениями) с фазовым сдвигом в 30 эл.град.

5. Известные в настоящее время технические устройства для частотного

управления асинхронным электроприводом в полной мере не отвечают

требованиям, предъявляемым к мощному высоковольтному электроприводу и им

присущи следующие недостатки:

. ограниченная низкоскоростными электроприводами область применения,

необходимость изготовления специальной машины или переделка серийной,

применение специальных устройств для механического сочленения валов,

невозможность применения в запыленных и агрессивных средах, что

обусловлено наличием датчиков на валу и внутри машины;

. высокая сложность технической реализации, обусловленная наличием сложных

технических устройств: координатного преобразования, векторных фильтров,

фазовращателей, функциональных преобразователей, блоков коррекции

мгновенного значения частоты;

. наличие большого числа датчиков, осуществляющих высоковольтную

гальваническую развязку;

. невысокая надежность, что обусловлено наличием датчиков на валу и внутри

машины, высокой сложностью технической реализации блоков АСР, датчиков,

осуществляющих высоковольтную гальваническую развязку.

1.2 Техническое описание системы

В основе математического описания АД при переменной частоте питающей

сети лежит общая теория электрических машин.

Основой для математического описания АД служат уравнения,

составленные в фазовых координатах. Особенностью АД является совокупность

магнитосвязанных цепей с коэффициентами само- и взаимоиндукции,

периодически изменяющимися в функции угла поворота ротора относительно

статора. В зависимости от степени насыщения магнитной системы машины, эти

коэффиценты могут зависеть еще и от токов во всех обмотках. Уравнения могут

быть составлены либо в трехфазной системе координат, либо в двухфазной для

обобщенной машины. При записи уравнений в фазовых координатах получают

систему дифференциальных уравнений высокого порядка ( в трехфазной системе

координат число уравнений равно 14) с переменными коэффициентами.

Пользоваться такой системой для исследования электромеханических процессов,

происходящих в АД не представляется возможным в связи с громоздкостью,

наличием переменных коэффициетов, нелинейностью. Дальнейшее упрощение и

преобразование исходной системы уравнений основывается на следующем общем

методе. При этом уравнения в фазовых координатах преобразуются к

уравнениям, выраженным через обобщенные (результирующие) векторы, вводится

система относительных единиц для токов, напряжений, потокосцеплений,

скоростей вращения, частот, моментов, активных, индуктивных сопротивлений.

Введение системы относительных единиц упрощает вид уравнений, а выражение

переменных через результирующие векторы приводит к виду дифференциальных

уравнений, при котором коэффициенты дифференциальных уравнений ненасыщенной

машины являются постоянными величинами. Для насыщенной машины необходимо

вводить зависимость величин этих коэффициентов от магнитного состояния

машины.

После указанных преобразований получают систему дифференциальных

уравнений шестого порядка с постоянными коэффициентами, что значительно

упрощает описание АД и делает возможным использование этой системы для

ииследования электромеханических процессов, протекающих в АД. Дальнейшее

преобразование полученной системы уравнений сводится к переводу векторов,

входящих в уравнение, в различные системы координат (в зависимости от цели

решаемой задачи).

При математическом описании АД принят ряд допущений, соответствующих

идеализированному представлению АД:

. фазные обмотки сииметричны, одинаковы, воздушный зазор по все окружности

ротора одинаков;

. не учитываются потери в стали, а также высшие гармоники магнитодвижущей

силы и рабочего потока;

. параметры АД постоянны и не зависят от токов в обмотках АД;

. системы питающих токов (напряжений) симметричны.

Технические характеристики рассматриваемого АД приведены в таблице 1

Таблица 1

|Наименование параметров |Электродвигатель АО2-52-4 |

|1. Номинальная мощность, Pн |10 кВт |

|2. Номинальное напряжение (фазное), |220 В |

|Uн | |

|3. Номинальный (фазный) ток, Iн |19 А |

|4. Номинальная скорость, ( |1460 об/мин |

|5. Номинальный момент, Mн |65.4 н.м. |

|6. Момент инерции, J |0.09 кг(м2 |

|7. Число пар полюсов, 2p |4 |

|8. Номинальная частота, fн |50 Гц |

|9. Активное сопротивление статора, |0.45 Ом |

|rs | |

|10. Активное сопротивление ротора, |0.7 Ом |

|rr | |

|11. Индуктивность рассеяния статора,|43(10-4 Гн |

|l(s | |

|12. Индуктивность рассеяния ротора, |51(10-4 Гн |

|l(r | |

|13. Взаимная индуктивность статора и|0.1045 Гн |

|ротора, Lm | |

Система уравнений для идеализированного трехфазного короткозамкнутого

АД в системе координат, вращающейся с поизвольной скоростью (к с

использованием системы относительных единиц согласно [ ], имеет вид:

[pic]

где [pic] - обобщенные векторы, соответственно, напряжения, тока,

потокосцепления статора;

[pic] - обобщенные векторы, соответственно, тока и потокосцепления

ротора;

[pic] - активные сопротивления, соответственно, статора и ротора;

Lm - взаимная индуктивность статора и ротора;

[pic] - индуктивность рассеяния, соответственно, статора и ротора;

[pic] - соответственно, электромагнитный момент и момент

сопротивления на валу АД;

H - момент инерции ротора АД;

( - угловая скорость вращения ротора АД;

p - символ дифференцирования по времени.

Установившемуся режиму работы АД (все производные в фомуле равны

нулю) системе соответствует T-образная схема замещения АД, изображенная

на рисунке 1, где I( - ток намагничивания АД; (1 - частота питающей сети.

При математическом описании АД принята система относительных единиц,

базовые значения которой определяются системой:

[pic]

- базовый ток;

- базовое напряжение;

- базовая скорость;

- базовая частота;

- базовое время;

- базовый момент;

- базовая индуктивность;

- базовое потокосцепление;

- базовое сопротивление;

- базовый момент инерции.

Целью дипломного проекта является разработка и исследование

автоматической системы регулирования (АСР) асинхронного высоковольтного

электропривода на базе автономного инвертора тока с трехфазным

однообмоточным двигателем с детальной разработкой программы высокого уровня

при различных законах управления.

В ходе конкретизации из поставленной цели выделены следующие задачи.

Провести анализ известных законов управления применительно к

высоковольтным электроприводам и определять на основе анализа рациональные

законы и способы частотного управления высоковольтного злектропривода для

разрабатываемых АСР.

Синтезировать автоматическую систему регулирования высоковольтного

электропривода с трехфазным однообмоточным с учетом следующих требований,

предъявляемым к АСР высоковольтного электропривода.

1. Реализовывать для электроприводов, работающих с постоянным моментом

сопротивления в частых пуско-тормозных режимах управление по закону с

постоянством потокосцепления ротора, обеспечивающему работу

электропривода в интенсивных динамических режимах.

2. Иметь минимальное количество датчиков на валу и внутри машины.

3. Иметь минимальное количество датчиков, осуществляющих высоковольтную

гальваническую развязку.

4. Реализовывать управление трехфазным двухобмоточным короткозамкнутым

асинхронным двигателем.

5. Обеспечивать минимальную сложность технической реализации АСР.

Исследовать разработанные АСР в составе электропривода в динамических

и статических режимах работы.

1.3 Анализ существующих средств автоматизации

Известные в настоящее время технические устройства для частотного

управления асинхронным электроприводом в полной мере не отвечают

требованиям, предъявляемым к мощному высоковольтному электроприводу и им

присущи следующие недостатки:

. ограниченная низкоскоростными электроприводами область применения,

необходимость изготовления специальной машины или переделка серийной,

применение специальных устройств для механического сочленения валов,

невозможность применения в запыленных и агрессивных средах, что

обусловлено наличием датчиков на валу и внутри машины;

. высокая сложность технической реализации, обусловленная наличием сложных

технических устройств: координатного преобразования, векторных фильтров,

фазовращателей, функциональных преобразователей, блоков коррекции

мгновенного значения частоты;

. наличие большого числа датчиков, осуществляющих высоковольтную

гальваническую развязку;

. невысокая надежность, что обусловлено наличием датчиков на валу и внутри

машины, высокой сложностью технической реализации блоков АСР, датчиков,

осуществляющих высоковольтную гальваническую развязку.

1.4 Обоснование системы автоматического управления

При частотном управлении асинхронными двигателями наиболее часто

используются следующие законы: поддержание постоянства потокосцепления

статора (Y1=const), поддержание постоянства главного потока машины

(Y0=const), поддержание постоянства потокосцепления ротора (Y2=const), и

регулирование величины потокосцепления в зависимости от величины

нагрузочного момента (Y1, Y0, Y2) =f(M)).

Первый закон реализуется при поддержании постоянного отношения ЭДС

статора к угловой частоте поля. Основным недостатком такого закона является

пониженная перегрузочная способность двигателя при работе на высоких

частотах, что обусловлено увеличением индуктивного сопротивления статора и,

следовательно, снижением потокосцепления в воздушном зазоре между статором

и ротором при увеличении нагрузки.

Поддержание постоянства главного потока повышает перегрузочную

способность двигателя, но усложняет аппаратную реализацию системы

управления и требует либо изменений конструкции машины, либо наличия

специальных датчиков.

При поддержании постоянного потокосцепления ротора, момент двигателя

не имеет максимума, однако при увеличении нагрузки увеличивается главный

магнитный поток, приводящий к насыщению магнитных цепей и, следовательно, к

невозможности поддержания постоянства потокосцепления ротора.

Общим недостатком законов с поддержанием постоянства потокосцепления

являются: низкая надежность, обусловленная наличием датчиков, встраиваемых

в двигатель, и потери в стали при работе двигателя с нагрузочным моментом

меньше номинального. Эти потери вызваны необходимостью поддержания

постоянного номинального потокосцепления в различных режимах работы.

Существенно повысить КПД двигателя можно путем регулирования

магнитного потока статора (ротора) в зависимости от величины нагрузочного

момента (скольжения). Недостатками такого управления являются низкие

динамические характеристики привода, обусловленные большой величиной

постоянной времени ротора, из-за чего магнитный поток машины

восстанавливается с некоторой задержкой и сложность технической реализации

системы управления.

На практике группа законов с постоянством магнитного потока получила

распространение для динамичных электроприводов, работающих с постоянным

моментом сопротивления на валу и с частыми ударными приложениями нагрузки.

В то время как группа законов с регулированием магнитного потока в функции

нагрузки на валу применяется для низкодинамичных электроприводов и для

приводов с “вентиляторной” нагрузкой.

В то же время существует ряд приводов таких механизмов как насосы,

компрессоры, конвейеры и т. д., которые занимают промежуточное положение

между динамичными и низкодинамичными, и для которых существующие системы не

в полной мере удовлетворяют предъявляемым к этим приводам требованиям.

Высокодинамичные привода имеют сложную систему управления и повышенные

энергетические потери при недогрузе двигателей, а низкодинамичные привода

не всегда способны отработать быстрые изменения статического момента.

На основании вышесказанного можно сделать вывод, что существующие

системы не в полной мере отвечают требованиям, предъявляемым к

электроприводам c асинхронными двигателями.

Учитывая, что в настоящее время большинство приводов таких механизмов как

вентиляторы, насосы, компрессоры и т. д. имеют нерегулируемый привод,

актуальной является задача выбора системы управления. Причем система

управления должна обеспечивать достаточно высокое быстродействие,

надежность и высокие энергетические характеристики привода.

Как уже было отмечено, высокими энергетическими характеристиками

обладают системы с регулированием магнитного потока в функции нагрузки.

Увеличить их динамические характеристики можно путем форсировки статорного

напряжения (тока) во время переходных процессов и частых формирований

управляющих воздействий. Получить высокую надежность можно за счет

применения упрощенной системы регулирования, отказа от встроенных в

двигатель и механически связанных с ротором датчиков.

На рис. показана структурная схема системы, поддерживающей постоянство

угла между векторами тока статора (I1) и потокосцепления ротора (Y2), что

равнозначно поддержанию постоянства относительного скольжения двигателя.

Система управления состоит из: задатчика интенсивности (1);

программируемого контроллера (2); блока широтно - импульсного модулятора

(3); асинхронного электродвигателя с короткозамкнутым ротором (4); датчика

тока (5) и блока определения угла (6). Поддержание постоянства угла между

I1 и Y2 обеспечивает работу двигателя в области номинального режима с

максимальными значениями КПД и cos(j). Кроме того, привод, обладая

абсолютно жесткой механической характеристикой, что обусловлено

постоянством относительного скольжения, получает возможность точного

регулирования скорости вращения ротора путем изменения частоты поля.

Для технической реализации системы с поддержанием постоянства

коэффициента полезного действия электродвигателя необходимо знать либо

мгновенные величины относительного скольжения либо величину угла между

током статора и потокосцеплением ротора. Измерить скольжение можно с

помощью электромеханического или цифрового датчика скорости, угол между I1

и Y2 - с помощью датчиков напряжения и датчиков фазных токов. Так как

датчик скорости существенно повышает стоимость системы регулирования,

эксплуатационные затраты и ухудшает общую надежность системы, то более

предпочтителен вариант системы с обратной связью по углу между векторами

тока статора и потокосцепления ротора.

Существующие в настоящее время методы определения угла между I1 и Y2,

например [1, 2, 3], имеют низкое быстродействие (не более шести измерений

искомого угла за один оборот вектора поля) и невысокую точность измерения,

обусловленную “дрейфом нуля” аналоговых элементов схемы и вводом в алгоритм

определения углов активного сопротивления статора, значение которого

изменяется в широких пределах при нагреве двигателя.

Рассмотрим алгоритм определения угла между I1 и Y2, лишенный

вышеуказанных недостатков. Для обоснования алгоритма построим векторную

диаграмму асинхронного двигателя с короткозамкнутым ротором, отложив вдоль

действительной оси Ra ток намагничивания I0, определенный по известным

реактивным параметрам асинхронного двигателя и измеренным значениям фазных

токов и напряжений [4].

[pic]

Значение углов между I1 и Y2 можно определить в реальном масштабе

времени, когда вращение вектора тока статора статора I1 определяется

частотой питания асинхронного двигателя и в ускоренном масштабе времени,

когда вращение вектора тока I1 определяется в модели выбранным шагом

временного интервала и быстродействием микропроцессорной системы. Второй

вариант измерения углов более предпочтителен, так как позволяет осуществить

больше измерений. По измеренным значениям фазных токов двигателя определяем

величину вектора тока I1 и совмещаем его в модели с действительной осью Ra,

а затем переводим (в произвольный момент времени t1) вектор тока I1 в

неподвижную, относительно статора, систему координат, то есть начинает

выполняться программа, согласно которой вектор тока I1 поворачивается

против часовой стрелки со скоростью, определяемой быстродействием

микропроцессорной системы и выбранным шагом временного интервала.

[pic]

Из Т-образной схемы замещения (рис. 3) видно, что [pic], то есть векторы

тока и потокосцепления ротора взаимно перпендикулярны. В процессе поворота

угол между векторами I0 и Y2 g(t) будет изменяться согласно выражения:

[pic] (1), где a=w0t - текущий угол между вектором тока статора и

действительной осью Ra. В момент времени t2 вектор тока статора I1 займет

положение OC, при котором векторы тока ротора I2 и потокосцепления ротора

Y2 взаимно перпендикулярны, то есть g(t2)=g.

Из рис. видно, что при g(t2)=g выполняется соотношение:

I1(sinb=BC=AC+AB.

Величина отрезка AB определяется из подобия треугольников OBA и OED: [pic].

Так как AC = i2 (из векторной диаграммы), то

BC = I2 + [pic] = [pic].

Величина отрезка AC определяется из треугольника АFC:

[pic] (2).

Таким образом, изменяющийся во времени угол g(t) будет равен углу между

векторами тока намагничивания I0 и потокосцепления ротора Y2 асинхронного

двигателя в момент выполнения равенства:

[pic]. (3)

Из векторной диаграммы (рис. ) видно, что искомый угол b между векторами

тока статора I1 и потокосцепления ротора Y2 будет определяться как:

b = a(t2) + g(t2) = w0(t + g

2. ТЕХНИЧЕСКОЕ ЗАДАНИЕ

2.1 Наименование и область применения

Разрабатываемое устройство называется: автоматическая система

управления асинхронным двигателем.

Область применения разрабатываемого устройства не ограничивается

горнодобывающей промышленностью и может использоваться на любых

предприятиях для управления машинами с асинхронным приводом.

2.2 Основание для проведения разработки

Проектируемая АСУ предназначена для управления асинхронным двигателем

и осуществляет регулирование и измерение его основных параметров.

Автоматизированная система управления асинхронным двигателем может

применяться для замены уже установленных систем управления устаревших

образцов. При этом требуются минимальные капитальные затраты, но

достигается значительное улучшение работы объекта управления.

2.3 Цель и назначение разработки

Целью создания АСУ является повышение технико-экономических

показателей работы асинхронного двигателя. При этом эффективность

управления достигается за счет применения современных методов управления

технологическими процессами, а также использования новейших технических

средств автоматизации.

2.4 Требования к системе

Распределение функций АСУ должно быть выполнено с целью достижения

высокой устойчивости системы к отказам ее структурных компонентов и

сочетаться с централизацией функций принятия решений по управлению

технологическим процессом.

В целях повышения надежности функционирования АСУ должно быть

предусмотрено резервирование ее структурных компонентов.

АСУ должна быть реализована в виде структуры, состоящей из

определенного количества функциональных подсистем и отражающей принципы

декомпозиции АСУ как по технологическому признаку, так и в соответствии с

иерархией реализуемых задач управления.

2.4.1 Требования к комплексу решаемых задач

Для реализации поставленных задач система должна обеспечивать:

. пуск и останов двигателя;

. изменение частоты вращения вала двигателя;

. регистрацию (вывод на экран и печать) основных параметров двигателя

(информация должна представляться на экране оператору в удобной для

чтения форме: в виде таблиц и графиков);

. экстренный останов двигателя в случае поступления аварийного сигнала от

датчиков (при отклонении параметров от допустимых технологических

пределов);

. резервирование измерительных каналов.

2.4.2 Нижний уровень

Нижний уровень должен решать задачи сбора информации с датчиков

технологических параметров, контроль исправности датчиков и линий связи,

контроль параметров и сигнализация об отклонениях их за допустимые

технологические пределы, а также передает их в АСУ верхнего уровня.

2.4.3 Верхний уровень

Верхний уровень АСУ выполняет функции диалогового взаимодействия с

оператором, включающие в себя отображение, накопление и анализ данных по

измеренным параметрам двигателя, рассчитанным значениям параметров

двигателя.

2.4.4 Требования к надежности

В качестве комплексного показателя надежности

(учитывающего безотказность и ремонтопригодность) согласно ГОСТ 24.701-86

должен использоваться коэффициент готовности, определяющий вероятность

работоспособности системы в любой произвольно выбранный момент времени в

соответствии с режимом работы объекта управления.

Коэффициент готовности для системы в целом должен составить :

для автоматического режима (с учетом надежности датчиков)

- Кг=0,995;

для автоматического режима (без учета надежности датчиков)

- Кг=0,998;

для режима ручного (дистанционного) управления

- Кг=0,998.

2.4.5 Требования к безопасности

При проектировании АСУТП должны быть предусмотрены меры по

обеспечению безопасности при монтаже, эксплуатации, обслуживанию и ремонту

технических средств в соответствии с действующими нормативными документами

:

"Санитарные нормы проектирования промышленных предприятий" СН 245-71,

утвержденные Госстроем СССР 05.02.71г.;

"Правила устройства электроустановок" ПУЭ-76;

"Пожарная автоматика зданий и сооружений" СНиП 2.04.09-84г.;

"Система стандартов безопасности труда (ССБТ). Оборудование

производственное. Общие требования безопасности" ГОСТ 12.2.003-74;

"ССБТ. Цвета сигнальные и знаки безопасности", ГОСТ 12.4.026-76;

Уровень освещенности рабочих мест персонала АСУ должен

соответствовать характеру и условиям труда. Должны быть предусмотрены

защита от слепящего действия света и устранение бликов.

Для помещения микропроцессорной техники должна быть разработана

система автоматического пожаротушения. Все помещения, в которых размещаются

средства АСУ, должны быть оборудованы автоматической пожарной

сигнализацией.

Требования к безопасности электрических изделий, используемых в АСУ,

должны соответствовать

ГОСТ 12.2.007.0-75.

Требования к безопасности средств вычислительной техники,

используемой в АСУ, должны соответствовать ГОСТ 25861-83.

Все внешние элементы технических средств АСУ, находящиеся под

напряжением, должны иметь защиту от случайного прикосновения.

Все технические средства должны иметь защитное заземление.

2.4.6 Требования к эргономике и технической эстетике

Отделка помещений микропроцессорной техники и центрального поста

управления (ЦПУ) должна быть выполнена в светлых тонах.

Рабочее место технологического персонала центрального поста

управления должно соответствовать требованиям ГОСТ 22269-76 и ГОСТ 21958-

76.

Конструкция рабочих мест должна обеспечить быстроту, простоту

экономичность технического обслуживания и ремонта в нормальных и аварийных

условиях.

Все щиты и пульты, расположенные в ЦПУ, должны быть совмещенными (с

размещением средств управления по проектам электрооборудования и АСУТП) и

разработаны головным исполнителем.

Конструкция и расположение щитов, пультов в ЦПУ должны обеспечить

обозримость и простоту обслуживания.

Форма представления информации на видеокадрах должна обеспечивать

Страницы: 1, 2, 3, 4


© 2010 Реферат Live