Рефераты

Учебное пособие: Теоретичні основи теплотехніки

Газотурбінні установки можуть працювати по їдклам зі згоранням при постійному об'ємі і при по стінному тиску. Практикою газотурбобудування було доведено, що найкращі перспективи розвитку мають газотурбінні установки, що працюють по циклу зі згоранням при p=const.

Рис 17.1 .Принцистова схема найпростішої газотурбінної установки 1 - газова турбіна; 2 - повітряний компресор; 3 - регенератор; 4 -камери згорання; 5 -паливний нас ос; 6 - піковий двигун.

Принципова схема найпростішої газотурбінної установки зі згоранням при p=const показана на рис. 17.1. Робота установки протікає наступним чином: пусковий двигун (найчастіше поршневий д в.з. або електродвигун) через з'єднувальну муфту розкручує вал турбіни і барабан осьового компресора. Комстресор починає засмоктувати повітря з атмосфери, стискає його і направляє в регенератор (повітрепідігрвач). В регенераторі повітря нагрівається за рахунок тепла відпрацьованих газів, що виходять з турбіни. Підігріте повітря по трубопроводу поступає в камеру зговання. Сюди ж паливний насос через форсунки подає рідке паливо. Паливо згорає неперервно при p=const

Продукти згорання направляються по трубогроводу до сопел газової турбіни, звідки виходять звеликою швидкістю (до 1000м/сек) і попадають на лопатки робочого колеса, віддаючи їм більшу частину своєї кінетичної енергії, за рахунок якої і отримується механічна енергія обертання вала турбіни. Частина цієї енергії витрачається на гривід компресора і паливного насоса (пусковий двигун вимикається) а решта знімається з валу у вигляді ефективної потужності М9 що служить для приводу машини-зас обу.

Відпрасовані гази по виході з лопатевих каналів робочих коліс турбіни направляються в регенератор, де віддають частину свого тепла на підігрів повітря, що проходить з компресора в камери згорання. Камера згорання неперервно з'єднується з повітряним і гвливним трубопроводами і трубопроводом, що служить для відводу продуктів згорання. Цим самим забезпечується неперервний процес горіння палива припостійному тиску.

Відомо, що для термодинамічного дослідження циклу такого газотурбінного агрегата потрібно ідеалізувати процеси, що протікають в ньому, рахуючиїхзворотніми. Дляцього дійснийпроцесроботизаміняють замкнутим і припускають, що в ньому приймає участь незмінна кількість робочого тіла. Розглянемо спочатку такий ідеальний цикл без регенератора, зобразивши його в рv і ТS -діаграмах (рис 172). В цьому циклі робоче тіло піддається стиску по адіабаті 1-2, потімвід безкінечного ряду зовнішніх джерел проводиться тепло по ізобарі 2-3; в подальшому відбувається розширення по адіабаті 3-4 і,

нарешті охолодження робочого тіла q2 протікає поізобарі 4-1.

Термічний КК.Д цикпа газотурбінної установки з згоранням при p=const може бутивизначенийзвідношеннят

.

Графічно корисна робота А0 вимірюється площею 12341, рівною різниці між площами 45634 і 15621. Перша з них (площа 45634) вимірює роботу т^роши Ат, а друга (площа 15621) вимірює роботу Аок, затрачену на стиск 1кг повітря від р1 до р2, тобто корисна робота газотурбінної установка дорівнює різниці повної роботи газової турбіни і теоретичної роботи компресора:

А0= Ат - Аок

Звідси

Оскільки температура відпрацьованих газів Т4 вище, ніж температура повітря на виході з компресора Т2, то частина тепла, що віддається при охолодженні газів в процесі 1-4 може бути передана в регенератор дгтя нагрівання повітря, що поступає в камеру згорання В Тs -діаграмі (див. рис. 17.2) нарів повітря в регенераторі відображається гроцесом 2-2', і тоді кількість тепла, що отримує робоче тіло від гарячого джерела, буде вимірюватися площею 2'3572', котра менша від площі 62356, що визначає q1 без регенератора, а це, природно, буд є збільшувати ККД циклу, дійсно:

без регенератора

з регенератором

але так як площа 2'3572'<площі23562,то ,

Очевидно, що теоретично максимальна температура підігріву повідря в регенераторі Т2 = Т4 в цьому випадку степінь регенерації σ=1. Степенем регенерації називається відношення кількості тепла, отриманого повітрям при проходженні через регенератор до максимально можливої кількості тепла, яке могло би отримати повітря в регенераторі, жон воно нагрівалось до температури відпрацьованих газів Т4. В діючих установках степінь регенерації о складає зазвичайО.6-0,75.

Дійсний цикл газотурбінної установки відрізняється від теоретичного наявністю втрат на тертя і вихороутворення в турбіні і компресорі (цикл 12а34а1 в Тs - діаграмі на рис 17.2) ці втрати уточнюються відносним внутрішнім ККД турбіни ηОіТ адіабатнім ККД компресора – ηАД і тоді внутрішній ККД такого дійсного цикла складає

Найбільш ефективними методами підвищення економічності газотурбінних установок являється застосування регенерації таїла, ступінчатий процес згорання,перехід назамкнутийі напівзамкнутийциклроботиі інші.


18. Цикли паросилових установок (псу)

Теплові паросилові установки дають біля 80% енергії, яка виробляється в країні. Принципова схема паросилової установки показана на рисі 8.1.

В паросилових установках продукти згорання палива безпосередньо не приймають участь в робочому циклі, вони є тільки джерелом теплоти, а робочим тілом служить пара, найчастіше це водяна пара. Волога насичена пара із котла 1 поступає в пароперегрів ач 2. де за рахунок теплоти димових газів нагрівається до стану перегрітої пари. Далі пара поступає в парову турбіну З, де теплова енергія пари перетворюється в кінетичну енергію. В конденсаторі 5 проходить повна конденсація водяної пари і вода насосом 6 подається назад в котел.

Цикл Карно, який є найефективнішим для водяної пари можливий тоді, коли ізотерми співпадають з ізобарами, тобто повинен проходити в області вологої насиченої пари. Технічно здійснити такий цикл важко через громіздкість насосної установки для стиснення вологої насиченої пари (рис.18.1.1).

Робота, яку необхідно виконати відповідає площі аdпт. Тому в паросилових установках за циклом Карно зберігається лиш загальне термодинамічне значення як циклу, який має в заданому інтервалі температури найбільше значення термічного к.к.д.

18.1 Цикл Ренкіна паросилової установки

Основним циклом паросилової установки є цикл Ренкіна. Принципова схема циклу показана на рис.18.1.2. Графічне зображення циклу показано на проходить при постійному тиску. В турбіні (процес 1-2) проходить адіабатне розширення пари до станув ологої насиченої пари. Конденсація пари і відведення теплоти проходить при постійному тиску і об'ємі. Процес 2-3 є одночасно ізобарнимі ізотермічним.

Оскільки вода практично нестислива, то в процес подачі води 3-4 є ізохорним, в TS - координатах точка 3 і 4 співпадають Робота, яка витрачається на стиснення в 34 8 7 є значно меншою чим в циклі Карно.

Термічний ККД циклу Ренкіна може бути визначений з загального виразу:

де l -робота в циклі;

q1 - кількість підведеної теплоти.

Теплота надається робочому тілу на ділянках 4-5-6-1 при постійному тиску. її можна визначити як

q1=h1-h2’,

де h1- ентальпія пари на вході в турбіну;

h2’- ентальпія живильної води.

Теплота, віддана парою в конденсаторі при постійному тиску на ділягках 2-3 буде рівна q2=h2 -h2’, де h2 - ентальпія пари, яка виходить із турбіни.

Зручно визначити ККД циклу паросилової установки за допомогою h і-s -діаграми, де h1 і h2 визначаються за відомими початковими і кінцевими параметрами адіабатного процесу розширення парив турбіні. h2’- визначається за таблицями насиченої пари для тиску p2

Важливою розрахунковою характеристикою циклу є питомий розхід пари d0 який представляє собою відношення часового розходу пари Dо в ідеальному двигуні довиробпеної елекгроенергіїіУ.

Із теплового балансу ідеального двигуна Dо ( h1- h2)=3600N

 (18.2)

Із рівняння (18.1) неможливо вияснити характер впливу параметрів стану водяної пари на величину η циклу Ренкіна.

Для цього використаємо поняття еквівалентного циклу Карно, який проходить в межах середніх температур підведення і відведення тепла.

Із рівняння ηt=1-Т2ср/Т1cр випливає, що із збільшенням інтервалу середніх температур циклу (Т2ср і Т1ср) термічний ККД любого циклу збільшується. Збільшення середньої температури Т1ср в процесі підведення теплоти в циклі Ренкіна можна здійснити двома способами.

Перший - збльшення початкового тиску під ведення теплоти від 2,0 до 10,0 МПа при одній і тій же температурі перегрітої гари Т1=500°С і одним і тим же тиском в конденсаторі р2 = 0,004 МПа підвищує ККД циклу Ренкіна від 0,368 до 0,426 тобто на 16,2 %.

Необхідно відмітити, щовласне підвищення тиску ніякої переваги не дає і якщо б підвищення ηt; можна було б досягнути іншим шляхом то йому необхідно було б надати перевагу. Негативним наслідком підвищення початкового тиску є збльшення степені вологості гари в гроцесі розширення.

Другий - підвищення температури перегрітої гари Т’1>Т1 що також приводить до збільшення середньої температури підведення теплоти в процесі (рисі 8.1.4). В зв'язку з цим найбільш сприятливі результати одержані при використанні високих початкових параметрів пари. Мінімальна температура Т2 визначається температурою навколишнього середовища 20-30°С , що відповідає тиску р=0,0024-0,0043Мпа

Навідміну від теоретичного циклу в дійснік циклах процеси протікають необоротно. Робота тертя пари в турбіні перетворюється в теплоту, підвищує ентальпію пари в кінцевому стані від h2 до h2Д. Тому дійсний процес адіабатного розширення пари в турбін, протікає необоротно зі збільшенням ентропії, умовно позначиться не прямою 1-2, а кривою 1-2д (рис. 18.1.5)

Тоді відноснийвнутрішнійККД турбіни

 (18.3)

η01 для сучасних машин складає 0,8-0,9. Абсолютний внутршній ККД для циклу Ренкіна:

 (18.4)

ηі- сучасних паросилових установок η становить 0,35.

Дня підвищення ККД паросилової установки використовують попередній підігрів живильної води за рахунок відпрацьованої пари (регенеративний цикл), вторинний перегрів пари (цикл з вторинним перегрівом), комбіноване використання тепла (теплофікаційний цикл).

Особливістю регенеративного циклу (рис. 18.1.6) є те, що конденсат після конденсатора попередньо підігрівається в спеціальних теплообмінниках парою, яку відбирають із проміжних ступенів турбіни. Практично доцільне використання 6-8 степеней.

При відборі пари на підігрів конденсату з однієї сторони зменшується розхід теплоти q1 на одержання пари, але з іншої зменшується робота lо в турбіні. Не дивлячись на протилежний характер цих процесів відбір пари завжди підвищує ηt. Це пояснюється тим, що при підігріві живильної води за рахунок теплоти конденсації відпрасованої пари виключається підвід теплоти від зовнішнього джерела на ділянці 4-5' - (рис.18.1 6) і таким чином середня температура підводу теплоти від зовнішнього джерела в регенеративному циклі збільшується (підведення зовнішньої теплоти здійснюється тільки на ділянц 5 -6-1).

Задачі зручно вирішувати по h-s діаграмі. Розглянемо схему і регенеративний цикл з однимвід бором (рис.18.1.6).

Із одного кілограма пари, яка поступає в турбіну, акг пари розширяються тільки до тиску від бору р20 виконуючи корисну роботу і, l1= а(h1-h2),а 1-a кг розширюються в турбіні до кінцевого тиску р2, виконуючи корисну роботу

l2 = (1-а) (h1-h2)

Загальна робота 1 кг пари в регенеративному циклі:

l0 = l1 + l2 = а(h1-h20)+ (1-а) (h1-h2) або l0 = h1-h2- а (h20 -h2)

Кількість теплоти, затраченої на нагрів 1 кг пари, q1= h1-h20

Tермічний ККД регенеративного циклу:

Кількість відібраної парн визначається із балансового рівня теплоти нагрівана:

(1-а)(h'20- h'2)=а(h20- h'2), (18 6)

звідки:

 (18.7)

де h20- ентальпіяшрипритиску відбору;

h'20- ентальпія парн при тиску виходу парн із турбіни;

h'2- ентальпія парн при тиску в конденсаторі.

18.2 Цикл з вторинним перегрівом пари

Як було встановлено негативним наслідком підвищення початкового тискуєзошьшення степені вологості гвривкінці розішрення.

Щоб уткнути підвищення вологості в кінці адіабатного розширення за допустиму межу, використовують підвищення початкової температури перегрітої пари, а також вторинний або проміжний перегрів (рисі 8.2.1 та 182.2). Суть проміжного перегріву полягає в тому, що пару після розширення 1-2 в першій ступені турбіни І при постійному тиску рпр вторинно перегрівають в другому перегрівачу ПП2 до температури Т’1.

Потім пар а поступає в наступну ступень турбіни, депроходить розширення 1’-2 до тиску в конденсаторі. В результаті вторинного Перегріву степінь сухості пари збільшується з x1; до х2 відповідно точки 20 i 2.

Одночасно може підвищуватись і термічний коефіцієнт циклу.

Рис 18.2.1. Принципова схема паросилової установки з вторинним перегрівом пари.

18.3 Теплофікаційний цикл

В описаних цикл ах значна частина теплоти (більше 50%), що надається парі в паровому котлі, відводиться в конденсаторі. Вода, яка має температуру 25-30°С не може бути використана в огвлювапьних системах або для технологічних нужд.

Щоб в подальшому використовувати теплоту необхідно підвищити її температуру, для цього необхідно підвищити тиск парц яка виходить із турбіни. Такі установки працюють з погіршеним вакуумом або з протитиском. Поряд з виробництвом електроенергії вони відпускають теплоту в вигляді пари або гарячої води і називаються теплофікаційннмн(ТЕЦ). Схема і цикл показані на рисунку 18.3.1 та 18 3.2.

В цій установці відсутній конденсатор і пар а після турбіни з підвищеним тиском і температурою Тп направляється до споживача теплоти ТС, віддаючи теплоту споживачу, пара конд енсуєть ся і насосом направляється в котел.

Підвищення протитиску приводить до зменшення електричної енергії і термічного ККД, але загальне використання теплоти qвих при цьому значно підвищується.

qвих=l0 + q2 (13 8)

Комбінований спосіб виробництвом електроенергії і теплової енергії є одним з головних методів підвищення економічності теплових ел ектростанцій і служить основою тепгтофікації.

Характеристикою комбінованого процесу буде служити відношення використаної енергії іо l0 + q2 до підведеної теплоти в процесі q1

 (18.9)

В ідеальних випадках, коли вся теплота q2 використовується = 100%. В дійсності  досягає 60-80%.

Щоб в великому діагвзоні міняти теплове і електричне навантаження на більшості ТЕЦ використовують конденсаційні турбіни з проміжним відбором пащ, при тиску, необхідному для споживачів теплоти

18.4 Парогазовий цикл

Значне підвищення ефективності ПСУ можна досягнути шляхом комбінування газотурбінної установки з паросиловою (рнс.18.4.1, 18.4.2).

Продукти згорання після парового котла з температурою біля 700°С поступають в газову турбіну Т1. Попередній нагрів конденсату, який поступає в котел, проводиться випускними газами газової турбіни (процес d-а) в газоводяному підігрівану ГВ. Пара з котла поступає в парову турбіну Т2.

Відповідно в таких умовах ефективно використовується гази, що виходять із котла, а також покращується використання газів, які залишають газову турбіну. Переваги газотурбінного циклу - використання більш високої темстератури робочого тіла. В газових турбінах до 700°С, в паросилових установках - 500-550 ЯС. Перевага перед газовими є те, що в паровому котлі використовується більш низька температура холодного джерела. В газотурбінному температура на виході складає 150°С, а в паросиловому 25-30°С. Комбінована установка дає економію палива на 15% в порівнянні з паротурбінною.


19. Цикли холодильних установок

Холодильні установки використовують в харчовій промисловості і побуті, при заморожуванні ґрунту в будівництві тунелів і каналів, в хімічній і газовій промисловості приспалюванні газу, кондиціюванні повітря

Холодильні установки працюють по поротних циклах.

19.1 Цикл повітряної холодильної установки

Повітря з холодильника 1 (рис. 19.1.1), яке охолоджує приміщення 5 всмоктується в циліндр компресора 2 (процес й-1), де стискується (процес 1-2) (рис 19.1.2). При стискуванні температура повітря підвищується від Т1, до Т2 (процесі -2). Стиснуте повітря виштовхується з циліндра компресора (процес 2-b) в теплоприймач 3, де ізобарно охолоджується до температури Т3, віддаючи теплоту охолоджуючій воді q=Cрm1(Т2- Т3)

Охолоджене повітря прн тиску Р3 поступає в щліндр розширювальної машннн 4 (процес в-3). Тут проходить процес його адіабатнчного розширення від Р3 до Р4 = Р1 з виконанням роботи.

При адіабатичному розширенні повітря температура його знижується до 203...21K.

Охолоджене повітря з цнлівдра розширювальної машннн виштовхується в холодильник 1 (процес 4-1), де ізобарно нагрівається (4-1), забираючи від середовища приміщення кількість теплоти з, q1= Cрm2 (Т1- Т4). Площа а12bа показує роботу компресора lk площа b34аb - роботу розширювальної машннн lр, а площа 12341 рівна різниці площ - роботу, яка витрачається в установці, тобто роботу циклу lk = lk - lр.

З іншої сторони, робота циклу lk=q1-q2- Холодильний коефіцієнт установки визначаємо наступним чином:

 (19.1)

Приймаємо Cрm1= Cрm2 і поділимо чисельник і знаменник дробу на (Т1- Т4).. Одержимо:

 (19.2)

З адіабат 1-2 і 3-4 слідує,що

а

Оскільки

р2 =р3 і р4=р1,

то

Т2/Т1 = Т3/Т4 ; Т4/Т1= Т3/Т2

Тоді:

Підставляємо в рівняння (19.2). Одержима

 (19.3)

Порівняємо між собою холодильні коефіцієнти циклу повітряної установки і зворотного циклу Карно, взятих в одному і тому ж інтервалі граничних температур холодильника і теплоприймача

При ізотермічних процесах підводу і віддачі теплоти в зворотному щклі Карно гранична температура холодильника повинна бути рівна Т1, анагрівача -Т3. Тоді холодильнийкоефіцієнгзворотногоциклу Карно:

 Т3< Т2 то чпл<чк

Холодильний коефіцієнт називають також питомою холодопродуктивністю qо, яка показує кількість відібраної від холодильного джерела теплоти на одиницю затраченої роботи.

Цикл повітряної холодильної установки малоефективний. Крім того повітря має малу теплоємність, в результаті чого потрібний його великий об'єм.

19.2. Цикл парової холодильної установки

Відношення маси аміаку до маси розчинника називається масовим відношенням аміаку.

Коли t -34 обидва компоненти знаходяться в рідкому стані. Якщо розчин підігрівати, аміак випарується і в кінці масове відношення рівне 0. Пара буде чистий аміак, а рідина - вода. охолоджуюча

Рис. 19.4.1. Схема абсорбційної холодильної установки.

На рнс.19.4.1. показана схема найбільш простої абсорбційної установки. В кип’ятильнику 1, який містить водно-аміачний розчин при тиску рк і міцності ζк, проходить випарювання з розчину аміаку за рахунок теплоти, яка поступає з гарячим теплоносієм. На випарювання витрача ється теплота в кількості q1,.

Одержані таким чином пари аміаку направляються в конденсатор 2, де, віддаючи теплоту охолоджуючій воді (навколишньому середовищу), конденсується при рк = const. В результуючому вентилі 3 тиск рідкого аміаку знижується до тиску в абсорбері 6 ра< рк, в якому міцність розчину підтримується ζк > ζa. При такому тиску аміак поступає у випарник 4 і перетворюється в пару за рахунок теплоти q2, яка відводиться від охолоджуючих тіл в холодильній камері 5. Потімпаранаправляєгьсяв паровий простір абсорбера 6, в якому знаходиться випарений із розчину аміак, що має в зв'язку з цим Яльш високу температуру, ніж пара, яка поступила із випарювача. Ця хол одна парапоглннається розчином. Виділена при поглинанні теплота виводиться із абсорбера охолоджуючою водою.

Для того, щоб масове відношення розчинів в котлі і абсорбері запишалось весь час постійним, проводять перекачування насосом 7 розчину з більшим масовим відношенням з абсорбера в котел, а розчин з меншим масовим відношенням поступає з котла в абсорбер. В результаті того, що тиск в котлі вищий, чим в абсорбері, розчин по шляху в абсорбер проходить через дросельний клапан 8.


20. Тепловий насос

Тепловий насос - це машина призначена для поглинання теплоти з навколишнього середовища і передачі її об'єкту з ошьш високою темпер атурою.

На рис. 20.1. показана схема теплового насосу. Основними елементами є: компресор 1, конденсатор 2, регулюючий вентиль 3 і випарник 4, які складають звичайну компресійну холодильну установку. Вигарювання холодильного агенту в випарнику проходить за рахунок холодної води з жого-небудь водоймища. Подача водив випарник проходить за допомогою насосу 5. Охолоджена в випарнику вода скидається далі в водоймище. Конденсація виштовхнутого із компресора агента здійснюється в конденсаторі водою із зворотньої лінії системи опалення Підігріта в конденсаторі вода направляється в прилади опалювання 9, розміщені в опалюваному приміщенні 7. Циркуляція водив системі огвленняздійснюєтьсянасосом 6.

Рис 20 1 Тепловий насос

Ефективність теплового насосу оцінюється опалювальним коефіцієнтом


де q1 - питома теплота, яка виділяється при конденсації холодильного агенту в конденсаторі;

l0 - питома робота, яка затрачається на привід компресора.

ОСНОВИ ТЕПЛООБМІНУ

Основні види теплообміну.

Теорія теплообміну вивчає закони поширення і передачі теплоти між тілами

Розрізняють три види тепло обміну: теплопровідність, конвекція і променистий тепп ообмін.


21. Теплопровідність

Якщо у твердому тіш, нерухомій рідині або газі температура в різних точках не однакова, то теплота буде переходити від ділянки тіла з більшою

температурою до ділянки тіла з меншою температурою. Такий процес передачі теплоти називається теплопровідністю. Теплота при цьому передається за рахунок руху і взаємодії ел ементарних частинок - електронів.

Необхідною умовою процесу теплопровідності є різниця температури в різних точках тіла. В загальному випадку температура є функціао координат і часу:

t=f(x,y,z,τ) (21.1)

Сукупність значень температури для всіх точок простору в даний момент часу називається температурним полем.

Якщо температура тіла не змінюєтьсяв часі, то таке температурне поле називається стаїі онарннм, якщо змінюється - не стаціонарним.

Температура може бути функцією однієї, двох або трьох координат. Відповідно цьому температурне поле може бути одновимірним, двовимірним і тривимірним.

Рис. 21.1. До визначення температурного градієнту і теплового потоку.

При довільному температурному полі в тілі можна знайти точки з однаковою температурою. Геометричне місце таких точок утворює ізотермічну поверхню (рис. 21.1). Очевидно, що передача теплоти може відбуватися тільки від поверхні з більшою температурою до іншої з меншою температурою. Кількість переданої теплоти буде залежати від різниці температур між цими ізотермічнимиповерхнямиі від віддалі міжними.

Границя відношення зміни температур ∆t між двома ізотермічними поверхнями до віддані між ними ∆n взятій по нормалі називається темпер атурним градієнтом.

 (21.2)

Температурний градієнт є вектором, направленим по нормані до ізотермічної поверхні в сторону збільшеннятемператури.

Теплота поширюється в сторону гротиггежну градієнту температури, тобто в сторону меншої температури. Кількість теплоти, яка ператосить ся через будь-яку ізотермічну поверхню за одиницю часу називається тепловим потоком Q[Вт]

Тепловий потік віднесений до одиниці площі називається густиною теплового потоку . Густина теплового потоку величина векторна і направлена в сторону поширення тепла.

21.1 Закон Фур’є

Фур'є експериментатгьно встановив, що кількість переданої теплоти пропорційна падінню температури, часу і площ січення, перпендикулярно направленого напряму поширення теплоти,

Q=λFτgrad t (21.3)

Для густити теплового потоку закон Фур'є буде мати вигляд:

 (21.4)

Де n-називається коефіцієнтом теплопровідності ,.

Знак "-" показує, що напрям поширення теплового потоку і напрям градієнту температури- протилежні.

Коефіцієнт теплопровідності є фізичною властивістю речовини і характеризує її здатність проводити тепло:

Значення коефіцієнта теплопровідності представляє собою кількість теплоти, яка проходить через одиницю площі ізотермічної поверхи за одиницю часу при температурному градієнті рівному одиниці.

Дтярізних матеріалів коефіцієнт теплопровідності різний і в загалшому випадку залежить від структури, густини, температури, вологості і тиску. В зв'язку з тим, що в процесах теплообміну температура тіла змиюється і неоднакова в різних частинах тіла, тов першу чергу необхіднознатн залежність коефіцієнту теплопровідності від температури. Для металів ця залежність майже лінійна

 (21.6)

n0- коефіцієнт теплопровідності прн температурі t0

b-постійна, жавизначаєтьсядослідним шляхом.

Коефіцієнт теплопровідності газів лежить в межах 0,005-0,5 Вт/мК З підвищенням температури коефіцієнттеплопровідності росте.

Коефіцієнт теплопровідності крагшевих рідин лежить в межах 0,08-0,7Вт/мК. З гідвищенням температури зменшується, за виключенням води і гліцерину.

Коефіцієнт теплогровідності металів лежить в межах 20-400 Вт/мК. Найбльш тепгтопровідним металом є срібло (n=410) потім чиста мідь (n=395), золото (n=300), алюміній (n=210).

Дня більшості металів при збільшані температури коефіцієнт теплопровідності падає. Коефіцієнт тепгтопровідності падає при наявності в металі різних домішок. Так коефіцєнт теплопровідності дгтя чистої міді n = 395Вт/м К а для міді зі слідами миш 'яку n=1425т/м К

21.2 Диференціальне рівняння теплопровідності

Розглянемо передачу теплоти за рахунок теплогровідності через елементарний кубик з гранями dх, dу, dz приймаючи, що коефіцієнт теплопровідності n, питома теплопровідність Ср і густина с постійні (рис 21.2)

Визначимо потік теплотичерез грані елемента в результаті теплопровідності. З гідно закону Фур'є кількість теплоти, яка проходить через грань АВСДВ направленні осі Х рівна

 (21.7)

а через грань ЕFGК, яка має температуру

за цей же час

 (21.8)

Віднімаючивід рівняння(21.7) рівняння(21.8) одержима

 (21.9)

Аналогічнов напрямі осей У i Z

 (21.10)

 (21.11)

Кількість теплоти, яка залишилася в цьому об'ємі:

 (21.12)

В зультаті цього температура тіла зміниться

 (21.13)

а значить

Після скорочення одержима

де

а=

коефіцієнт температуропровідності.

 - операторЛапласа.

Одержане рівняння називається диференційним рівнянням теплопровідності Фур'є-Kірхгофа.

Дня того, щоб розв'язати рівняння теплопровідності в кожному конкретному випадку необхідно поставити умови однозначності. Умови однозначності включають:

геометричні умови, які характеризують розміри і положення системи;

фізичні умови, які визначають теплофізичні параметри тіла (коефіцієнт теплопровідності, густин а, теплоємність);

початкові умови, які описують розпрнділення температури в тілі в

початковий момент часу;

граничні умови, які описують стан тіл а на гр аничних поверхнях.

Граничні умови бувають трьох родів.

Граничні умови першого роду задають температуру на граничних поверхнях: t=f(x,y,z)

Граничні умови другого роду задають тепловий потік на граничних поверхнях: q=f(x,y,z)

Граничні умовитретього роду задають коефіцієнт тепловіддачі а і температуру навколишнього середовища tn

21.3 Тетопровідність плоскої стінки

Розглянемо одношарову необмежену плоску стінку, товщиною Б , з коефіцієнтом теплопровідності А. (рис. 21.3.1).

Визначимо постійні інтегрування, використовуючи граничні умови (21.15).

х=0х = 6

c2=t1t2=c1δ+t1

Отже розподілення температури в стінці

буде мати лінійний характер.

Визначити тепловий потік через плоску одношарову стінку можна, використовуючи закон Фур'є (21.4).

Проінтегрувавширівняння від t1 до t2, одержимо:

- називають теплопровідністю плоскої стінки.

- термічний опіртеплопровідносп одношарової стіки.

21.4 Теплопровідність багатошарової стінки

Розшянемо теплопровідність багатошарової плоскої стінки з товщиною шарів δ1, δ2, δ3 і коефіцієнтами теплопровідності λ1, λ2, λ3, (рис 21.4.1).

Після додавання лівих і правих частн рівнянь, одержима

 (21.17)

для п шарів

 (21.18)

21.5 Теплопровідність через циліндричну стінку

Розглянемо стаціонарний процес теплопровідності (рнс 21.5.1).

Проінтегру єм о рівняння:

 (21.21)


Підставимо граничні умови (21.20) в рівняння (21.21).

 (21.22)

 (21.23)

віднімемо від (21.22) рівняння (21.23):

 (21.24)

Теплопровідність через цилівдрнчну стінку

 (21.25)

- термічний опір теплопровідності через циліндричну стінку.

Дня багатошарової циліндричної стінки тепловий потік рівний :


 (21.26)

21.6 Теплопровідність тіл з внутрішнім джерелом теплоти

Розглянемо стінку товщиною - 2δі коефіцієнтом теплопровідності – λ (рис 21.6.1). В стінці діє внутрішнє джерело з об'ємною густиною теплового qv

 (21.27)

Інтегруємо рівняння (21.27):

Підставимо граничні умови: х = 0 , t0 = С.

Одержимо:


-рівняння зміни температури в плоскій стінці з внутрішнім джерелом теплоти.


22. Конвективний теплообмін

Конвекцією називається процес поширення теплоти за допомогою руху макроч астин ок рі ди нн.

В інженерній практиці найчастіше розглядають теплообмін між рухомою рідиною і твердою поверхнею, який називається конвективнич теплообміном, або тепловідд ачею

Згідно закону Ньютона-Ріхмана тепловий потік Q від рідини до стінки пропорційний площі поверхні теплообміну і різниці температур між твердою етикою tc і рідиною tp.

 (22.1)

Де а-коефіцієнттепловіддачі Вт/м2К

Фізичний зміст коефіцієнта тепловіддачі можна визначити як кількість теплоти, яка проходить через одиницю площі ізотермічної поверхні за одиницю часу при різниці температур між стінкою і поверхнею рівною 1 С.

Процес конвективного теплообміну нерозривно зв'язаний з руком рідини Розрізняють два видируху-вимушений і вільний.

Вільний рух рідини виникає в результаті дії масових сил; вимушенім -

при дії стороннх збудників (насоси, вентилятори). На процес конвективного теплообміну впливає і режим руху - ламінарний чи турбулентний При ламінарному русі течія має спокійний характер, при турбулентному -утворюються завихрення Але при люб ому режимі руху рідини в тонкому шарі біля поверхні стінки рух рідини в результаті дії сил тертя сповільнюється і швидкість падає до нуля. Тонкий шар рідини біля поверхні тіла, в якому відбувається зміна швидкості рідини від значення швидкості не збудженого потоку подалі від стінки до нуля безпосередньо на стінці називається динамічнимпограничним шаром.

Тонкий шар рідини, безпосередньо біля стінки, рух в якому має ламінарний характер,називають в'язкимпідшаром .Якщо температури стінкиі рідини неодинакові, то біля стінки утворюється тепловий пограничний шар, в якому відбувається вся зміна температури рідини. За пограничним шаром температура рідини постійна і рівна й. В загальному випадку товщини теплового і динамічного шару можуть не співпадати. Співвідношення товщини динамічного і теплового пограничних шарів визначається безрозмірним числом Прандля:

(22.2)

Де v-кінематичнав'язкість рідини;

а-коефіцієнт температуропровідності.

Безпосередньо біля стінки в ламінарному підшарі перенесення теплоти до стіїки здійснюється теплопровід ні стю і може бутивиражене законом Фур'є:

Де п – нормаль до поверхні тіла

Цю ж кількість теплоти можна визначити законом Ньютона-Ріхмана

Прирівнюючи ці рівняння одержимо:

 ;  (22.3)

Диференціальне рівняння, що описуєумови теплообміну на поверхні каналу (п = 0) називається рівнянням тепгтопер едачі.

По своїй фізичній суті конвективний теплообмін є дуже складним процесом і залежить від великого числа факторів, які визначають процес тепловіддачі. В загальному випадку коефіцієнт тепловіддачі є функцією фізичних параметрів рідини, характеру руху, форми і розмірів тіла.

Звідси коефіцієнт тепловіддачі:

а =f(λ,l,ρ,v,υ,β,Ф,a). (22.4)

Рівняння (22.4) (показує, що коефіцієнт тепловіддачі -складна величина і для її визнач еннянеможливодатизагальну формулу. Як правило для визначення а необхідно використовувати експериментальні дослідження.

22.1 Основні поняття теорії подібності

При вивченні різних фізичних явищ використовують два методи досліджень, які дозволяють одержати кількісні закономірності. В першому методі використовується експериментальне дослідження конкретних властивостей одиничного явищ а, в друго му - виходять з теоретичного дослідження даної проблеми. Перевагою експериментального методу дослідження є достовірність одержаних результатів. Але результати даного експерименту не можуть бути використані стосовно другого явица, яке в деталях відрі зняєть ся від вивчено го.

Другий метод досліджень для знаходження кількісних характеристик використовує найбільш загальні закони природи, які в свою чергу є результатом надзвичайно широкого уза гальнення дослідних даних.

Будь-яке диференціальне рівняння є математичною моделлю цілого класу явищ.

Таким чином, гід класом розуміють таку сукупність явищ, які характеризуються основним механізмом процесіє і однаковою фізичною природою

Явища, які входять в клас, підпорядковуються однаковим рівнянням як по формі, так і по фізичному змісту величин, які в нього входять Наприклад, диференціальне рівняння теплопровідності.

До кожного диференціального рівняння необхідно поставити умови однозначності.

В багатьох випадках знайти рішення диференціального рівняння, яке б відповідало конкретним умовам однозначності неможливо.

Об'єднання двох методівздійснюється теорією подібності.

Крім класу явищ і одиничного явища теорія подібності вводить поняття групи явищ

Групою явищ називають сукупність фізичних процесів, які описуються однаковими по формі і змісту диференціальними рівняннями і однаковими по формі і змісту розмірними умовами однозначності.

Поняття про подібні сть явищ зустрічається ще в шкільному курсі, коли ми говоримо про подібність трикутників. В даному випадку мова йде про геометричну подібність. Можна також говорити про подібні сть картини руху двох потоків рідини - кінематичну подібність, подібність поля розподілу сил -динамічну подібні сть, подібність розподілу температур-теплову подібність.

В загальному вигляді поняття подібності явищ зводиться до наступних положень:

Понягтяпро подібність у відношенні до фізичних явищ можна тільки застосовувати до явищ фізично однорідних, які описуються однаковими по формі і по змісту аналітичними рівняїнями.

Обов'язковою умовою подібності явищ є геометрична подібність.

При аналізі подібних явищ сггівставляги між собою можна тільки однорідні величини у відповідних точках простору і у відповідний момент часу.

Однорідними називаються величини, які мають однаковий фізичний зміст і однакову розмірність.

Відповідними точками геометрично подібних систем називаються такі точки, координати яких задовольняють умові:

 ; ;

Два проміжки часу називають ся відповідними, якщо вони мають спільний моментвідгтіку і зв'язані між собою співвідношенням:

- Подібність двох фізичних явищ означає подібність всіх величин, які

характеризують дане явище.

Це означає, що у відповідних точках простору і у відповідний момент часу для любих однорідних фізичних величин справедлива рівність: Х1 = СХ2.

Коефіцієнт пропорційності С називається константою подібності, або постійною подібності.

Постійні подібності не можна встановлювати або вибирати випадкова Між ними існує зв'язок, який виводиться із математичного опису процесу. Сгівв ід ношення між постійними подібності встановлює існування особливих величин, які називаються числами подібності.

Числа подібності встановлюються з розв'язку диференціаттьних рівнянь або шляхом узагальнення експериментальних даних. Наприклад, розглянемо рівняннятеплопередачі (22.3):

 (22.5)


 (22.6)

Позначимоконстантиподібності:

; ; ;

Звідси:

;

і.т.д., підставляючи ці співвідношення в рівняння (22.6) і скоротивши на С, одержимо:

 (22.7)

Рівняння (22.5) і (22.7) тотожні, оскільки виражають зв'язок між параметрами процесу, обумовленим диференціальні мрівнчнням тепловіддачі:

;

де  - число Нуссельта - характеризує теплообмін в пограничному шарі.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


© 2010 Реферат Live