Рефераты

Дипломная работа: Совершенствование электрификации МТФУХ "Кокино"

Электропотребление хозяйства уменьшилось в 2006 году на 14,8% по сравнению с 2004 годом. Незначительно, всего на 7,4%, уменьшилась электрообеспеченность хозяйства. Электровооруженность осталась практически неизменной.

Частота аварийных отказов электрооборудования в течение трех лет не меняется и находится в пределах нормированных значений, это связано с тем, что количественный и качественный состав электротехнической службы на предприятии не меняется; производство полностью укомплектовано необходимым оборудованием.

Численность работников электротехнической службы не меняется и составляет 2 человека. Нагрузка на одного электромонтера составляет примерно 350 у.е., что выше оптимальной нагрузки, 100 у.е., в 3,5 раза.

На рисунке 1.1 приведены графики потребления активной и реактивной электроэнергии потребителями центрального отделения учхоза «Кокино» в 2006 г.

Рисунок 1.1. Годовой график нагрузки потребителей электроэнергии отделения Скуратово


2 Электрификация объекта проектирования

2.1 Описание технологического процесса

Проектируемая ферма КРС рассчитана на 400 голов привязного содержания и включает два коровника по 200 голов дойного стада.

Каждый коровник разделен на восемь секций по 25 коров в каждой. Секции оборудованы стойлами, кормушками и автопоилками. К коровнику прилегают выгульные дворы. Содержание коров и нетелей – привязное с использованием пастбищ в летнее время.

Доение коров производится два раза в сутки, удаление навоза - скребковым транспортером, с одновременной погрузкой в транспорт с помощью наклонного транспортера. Имеется молочный блок, предназначенный для сбора молока, его первичной переработки и кратковременного хранения.

В настоящее время существует несколько технологий сбора молока. Наиболее широкое распространение получили две технологии: сбор молока в молокопровод и сбор молока в доильные ведра.

При доении в доильные ведра молоко собирается в доильные ведра, затем переливается во фляги и вручную, с помощью тележек транспортируется в молочную. Здесь фляги взвешиваются, затем молоко с помощью насоса перекачивается в молокоприемный резервуар. После этого начинается процесс первичной переработки молока.

При доении в молокопровод надоенное молоко поступает в молокопровод и далее по молокопроводу, проходя через счетчики удоя, поступает в молочную и накапливается в молокосборнике. Таким образом, после доения исключается ручная транспортировка молока, что значительно облегчает труд доярок, повышает производительность труда.

Однако такой способ доения требует больших эксплуатационных затрат, связанных в основном, с необходимостью регулярной промывки молокопровода, поддержания в технически исправном состоянии оборудования предназначенного для промывки молокопровода и поддержания необходимого в нем давления.

На ферме в качестве основного принят способ доения в молокопровод, как наиболее прогрессивный. А в качестве резервного, на случай выхода из строя молокопровода, способ доения в доильные ведра.

Раздача кормов производится кормораздатчиками КТУ-10, предназначенными для транспортировки и выгрузки в кормушки на одну или две стороны предварительно измельченных грубых и сочных кормов, корне - клубнеплодов и кормовых смесей. Их можно также использовать для перевозки силоса, сенажа и других кормов. КТУ-10 достаточно просто агрегатируется с тракторами типа МТЗ-80.

Поение производится поилкой автоматической индивидуальной, одинарной, с открытой чашей ПА-1А предназначенной для поения КРС. Поилка присоединяется к водопроводу внутри помещения или устанавливается на другие водораздающие машины.

Ферма обеспечивается горячей водой с помощью водонагревателя ВЭТ-400.

Удаление навоза производится скребковым транспортером ТСН-160Б, предназначенным для перемещения навоза из животноводческих помещений с одновременной погрузкой в транспорт. С помощью транспортера один рабочий обслуживает 100 стойл КРС. Помимо удаления навоза можно использовать для транспортировки силоса, сенажа и др. кормов на фермах КРС. ТСН состоит из горизонтального и наклонного транспортеров. Навоз, сброшенный в канал, передвигается скребками горизонтального транспортера и подается им в транспортный прицеп.


2.2 Выбор технологического оборудования

Объектом проектирования является коровник на 400 голов привязного содержания, молочный блок которого включает следующие типы технологического оборудования:

вакуумный насос, для создания вакуума в молокопроводе;

сепаратор-очиститель, для очистки и сепарирования молока;

охладитель молока;

резервуар для молока;

пастеризатор;

холодильный агрегат;

насосы для воды и для молока.

Определим производительность молочной поточной технологической линии в молочном блоке по формуле

,(2.1)

где N – поголовье дойных коров, гол;

М – среднегодовой надой на одну корову, кг;

И = 1,25 – коэффициент неравномерности;

Ж = 0,6 – коэффициент, учитывающий часть суточного надоя, приходящуюся на максимальный разовый надой при двукратной дойке;

Кх = 0,18 – коэффициент, учитывающий число сухостойных коров;

Д – число дней максимального по надою месяца;

Т – продолжительность доения, час.

Принимая надой на корову М = 4000 кг для поголовья дойного стада 200 голов, получаем производительность линии доения

.


2.3 Расчет электротепловых нагрузок

2.3.1 Расчет воздухообмена

Так, как коровник 400 голов разделён на 2 идентичных коровника вместимостью 200 голов, то, произведя расчёт для одного коровника, получим данные и для второго.

Расчет производится для коровника на 200 голов, средняя масса коровы - 400 кг. Расчетные температуры: наружного воздуха зимой tн =-25 °С [2]; наружная вентиляционная tн.в =-12°С [2], внутри помещения tв = +10 °С при относительной влажности jв = 80 % [3]. Зона влажности местности нормальная. Барометрическое давление 99,3 кПа.

Здание спроектировано одноэтажным; прямоугольной формы с размерами в плане 78 х 21 м. Высота стен 3,1 м, каркас железобетонный. Стены из камнебетонных блоков. Фундамент под капитальные внутренние стены из сборных бетонных блоков. Гидроизоляция стен из слоя цементного раствора состава 1:2, толщиной 20 мм. Цемент марки 400.

Полы цементные. Окна с двойным остеклением из стеклоблоков с расстоянием между стеклами 10 см, уклон перекрытий 15°.

Принимаем единую для всех помещений приточную систему вентиляции с подогревом воздуха электрокалорифером в холодный период.

Вентилятор выбираем по подаче и полному давлению. Расчетную подачу вентилятора находим по воздухообмену, необходимому для обеспечения оптимального микроклимата в вентилируемом помещении, расчетное давление по значению потерь в воздуховодах и оборудовании.

Определяем расчетный воздухообмен по теплоте:

, ,(2.2)

где Q – избыточное тепло, удаляемое с вентилируемым воздухом, кДж/ч,

Q = q·N =2380·200 = 476000 кДж/ч;(2.3)

1+ αtв - множитель, учитывающий увеличение объёма воздуха при tв;

α = 273-1 0С – температурный коэффициент расширения воздуха;

с- теплоёмкость 1воздуха, ( с = 1,3 кДж/м3∙0С).

 = 16502,87,

Определяем расчетный воздухообмен по углекислоте:

, (2.4)

где Gук = N∙gук = 200∙106 = 21200 л/ч;

Св = 2л/м3– допустимое содержание СО2 в воздухе помещения;

Сн = ,3 л/м3 – содержание углекислоты в наружном воздухе.

 = 14964,70 .

Определяем расчетный воздухообмен по влаге:

, (2.5)

где

dв = dнав + j/100 = 11,4 + 70/100 = 12,1;

dн = dнас + jн/100 = 0,88 + 80/100 = 1,68;

k1 = 1,1 – коэффициент, учитывающий испарение влаги с пола;

G = N·260 = 200 · 260 = 51553,36 л/ч.

 = 5587,8

Правильность расчета проверим по кратности воздухообмена K, которая для животноводческих помещений составляет K = 3…5 и определяется формулой:

К = Q:Vп(2.6)

где Vп - объем помещения, м3.

Объем помещения определим по формуле

Vп = a∙b∙h + a∙b∙tg150, м3,(2.7)

где а – длина помещения, а = 68,8 м;

b – ширина помещения, b = 21 м;

h – высота стен, h = 3,1 м.

Vп = 68,8∙21∙3,1 + 68,8∙21∙0,27 = 6511 м3.

Подставив численные значения в формулу (2.6), получаем кратность воздухообмена

К = 27600/6511 = 4,2.

Суммарную площадь сечения вытяжных шахт F находим по формуле

,м2.(2.8)

Предварительно определяем скорость воздуха в шахте высотой h=4 м по формуле:

v =  = 1,39 м/с.(2.9)

м2.

Определяем число вытяжных шахт

n = F/Sш,(2.10)

где Sш - площадь поперечного сечения шахты, принимаем шахту с площадью сечения 600 х 600 мм/

Тогда получаем

n = 3,47/0,36 = 9,63.

Принимаем 10 шахт с площадью сечения 0,6 х 0,6 м.

2.3.2 Расчет отопления коровника

Отопление рассчитываем по уравнению теплового баланса вида

QOT = QОГР + Qвент + Qисп – Qж;(2.11)

Qот = 111248,64+312316,28+24500-33320 = 334612,8 кДж/ч.

Здесь QОГР - теплопотери через ограждения

QОГР = q0V(tB –tH) = 4·2505,6·(10+13)=111248,64 кДж/ч,(2.12)

где q0 = 4 кДж/м3·ч - тепловая характеристика помещения;

Qвент - теплопотери через систему вентиляции

Qвент=L∙c(tB–tH)=5562,57∙1,3(10-(-12))∙1,396=232184,2 кДж/ч, (2.13)

где L – расчетный воздухообмен;

Qисп - тепло, затрачиваемое на испарение

Qисп = 2,5Qконстр = 2,5 · 70000 · 0,14 = 24500 кДж/ч,(2.14)

где 2,5 – скрытая теплота испарения воды, Qконстр - количество влаги, испаряемой из пола и других конструкций (14% от влаги, испаряемой животными по СНиП);

Qж - количество тепла, выделяемое животными

Qж = qж∙N∙ki = 2380 · 200 · 0,07 = 33320кДж/ч,(2.15)

где qж – количество тепловыделения одним животным;

ki =0,7- коэффициент, учитывающий зависимость тепловыделения животного от температуры.

Полезная мощность, необходимая для отопления помещения:

Р = QOT/3600/ηу, (2.16)

где ηу = 0,9…0,95- тепловой КПД отопительной установки:

Р = 334612,8/3600/0,95 = 97,84 кВт.

Определяем мощность одной электрокалориферной установки

РЭК = Р/m,(2.17)

где m – количество электрокалориферных установок. Принимаем m = 2 для двух коровников, мощность одного электрокалорифера РЭК = 100 кВт производительностью L = 3600…4000 м3/ч.

Определим напор, создаваемый вентилятором, по формуле

PB=Ht+hмс (2.18)

Принимаем приточный воздухопровод прямоугольного сечения 0,5х0,4 м и длиной 30 м, тогда

d = dэ = 2ab/(a+b) = 2×0,5×0,4/(0,5+0,4)= 0,445 м. (2.19)

Задавшись скоростью приточного воздуха vнв = 12 м/с и зная, что для tв=16 °С, r= 1,197 кг/м3 и l = 0,02…0,03, определим потери в трубопроводе

Нт = 0,02×(30/0,445)×122 × 1,197/2 = 116 Па.

Местные сопротивления подсчитаем по формуле:

hмс = ∑vнв∙ρ∙ε/2 = 3,95 ×122×1,197/2 = 340 Па,(2.20)

где ε - сумма коэффициентов местных сопротивлений отдельных участков приточной системы, равная Sε = 3,95.

С учетом сопротивления установки проходу воздуха, которое равно

Рку =1,2×10,71,76 = 78 Па.

Общий напор вентилятора составит

РВ = 116+340+78 = 534 Па.

Подача вентилятора при воздухообмене

QВ=1,1×3710 = 4080 м3/ч.

По номограмме принимаем центробежный вентилятор Ц4-70 № 4, у которого А = 4000, hв = 0,6. Частота вращения этого вентилятора

n = 4000/4 = 1000 об/мин.

При hп = 0,95 мощность на валу электродвигателя

NВ = 4080×612/(3,6×106×0,6×0,95) = 1,21 кВт.

Коэффициент запаса мощности Кз = 1,2Ю а мощность вигателя

Pуст = 1,2 × 1,21 = 1,45 кВт.

Выбираем электродвигатель с параметрами в таблице 2.2

Таблица 2.2 – Характеристики электродвигателя вентилятора

Двигатель Рн, кВт n, об/мин cosj µк µн µmin КI
АО2-31-6 1,5 1000 0,74 0,74 2,2 1,9 1,4 4

2.4 Расчет освещения и облучения

2.4.1 Светотехнический расчёт

При выполнении данного раздела придерживаемся следующей последовательности: выбирают источники света; систему и вид освещения; нормируемую освещенность и коэффициент запаса; тип светового прибора; размещают светильники в освещаемом пространстве; рассчитывают мощность осветительной установки; проверяют фактическую освещенность в контрольных точках; составляют светотехническую ведомость.

Произведём светотехнический расчёт для стойлового помещения площадью 1444,7 кв.м со следующими исходными данными:

Вид освещения - рабочее, система - общее равномерное.

Нормируемая освещенность для ламп накаливания Ен=30 лк.

Коэффициент запаса для ламп накаливания кз =1,15.

Среда помещения - сырая. Минимальная степень защиты IP53.

Из [8,табл.П1.4] выбираем светильник НСП21 с КПД=75% и кривой силы света Д. Расчётная высота осветительной установки

Hp = H0 – hCB - hраб,(2.21)

гдеН0 - высота помещения, м;

hCB - высота свеса светильников, м;

hраб - высота рабочей поверхности от пола, м.

Для стойлового помещения Н0 = 3,3 м; hCB = 0,5 м и hраб = 0, тогда

Hp = 3,3 – 0,5 – 0 = 2,8 м.

Расстояние между светильниками с кривой Д (λс=1,2; λэ=1,6):

Lc = Hp·λсp = Hp(λс+ λэ)/2 = 2,8(1,2 + 1,6)/2 = 3,92 м.(2.22)

Крайние светильники устанавливаем на расстоянии

lав = 0,5·Lc = 1,96 м.

Определим число светильников в одном ряду по длине А помещения

NA = (A – 2lав)/Lc +1 = (66 - 2·1,96)/3,92 + 1 = 17 штук.

Число светильников по ширине В помещения

NB= (B – 2lав)/Lc +1 = (21 - 2·1,96)/3,92 + 1 = 5 штук.

Тогда в помещении коровника имеем

N = NA· NB = 85 светильников.

Расстояния между светильниками в ряду

LA = A/NA = 66/17 = 3,8 м

и между рядами

LВ = A/NВ = 21/5 = 4,2 м.

Рассчитаем мощность осветительной установки. Задавшись коэффициентами отражения потолка ρП=30%, стен ρСТ =10% и рабочей поверхности ρР=10%, определим индекс помещения по формуле

 = = 5,6.(2.23)

По справочнику определим коэффициент использования светового потока ηи=0,64. Тогда расчетный световой поток лампы в светильнике

Ф =  = = 1141 лм.(2.24)

Здесь S - помещения, м2;

z - коэффициент неравномерности (z =1,2 [8, с.17]).

По найденному световому потоку и каталожным данным выбираем тип лампы и её мощность: лампа БК 215-225-100, Рл=100Вт, Фл=1350лм.

Отклонение табличного светового потока от расчётного

;

 находится в допустимых пределах, значит, лампа выбрана, верно.

Удельная установленная мощность осветительной установки

Руд = Рсв·N/S = 100·85/1444,7 = 5,9 Вт/м2. (2.25)

Во время доения освещенность на вымени коровы должна быть не менее 150 лк, поэтому увеличиваем количество светильников в 2 раза в первом, третьем, пятом рядах.

Результаты светотехнического расчета остальных помещений сведены в светотехническую ведомость (таблица 2.3).


Таблица 2.3 - Светотехническая ведомость расчета освещения коровника

Характеристика помещений Коэффициент отражения Система освещения Нормированная освещенность, лк. Вид освещения Коэффициент запаса Светильники Лампы розетки Установленная мощность, Вт Удельная мощность, Вт/м2
№ по плану Наименование Площадь, м2 стен потолка пола тип количество тип мощность, Вт число мощность, Вт
1 Стойловое 1447,3 30 10 10 Общая равномерная 30 рабочее 1,15 НСП 21 85 БК215-225-100 100 - - 8500 5,87
2 С подстилкой 9,0 30 10 10 20 рабочее 1,15 НСП 21 1 БК215-225-100 100 - - 100 11,1
3 Подсобное 14,1 10 30 10 20 рабочее 1,15 НСП03М 1 БК215-225-60 60 1 500 560 4,25
4 Инвентарная 9,0 30 10 10 100 рабочее 1,15 НСП 02 1 БК215-225-150 150 1 500 650 16,6
5 Тамбур 6,7 10 30 10 20 рабочее 1,15 НСП 11 1 БК215-225-100 100 - - 100 14,9
6 Навозоудаления 118,9 30 10 10 20 рабочее 1,15 НСП 01 5 БК215-225-100 100 - - 500 4,2
7 Вент. камера 18 10 30 10 30 рабочее 1,15 НСП 21 1 БК215-225-100 100 - - 100 5,5
8 Наружное освещение 6,0 - - - 5 дежурное 1,15 НСП 03 4 БК215-225-60 60 - - 240 10
Установленная мощность светотехнического оборудования 10750 72,42

Таблица 4.1 - Светотехническая ведомость расчета освещения после замены ламп БК на ДРВЛ

Страницы: 1, 2, 3, 4, 5, 6, 7


© 2010 Реферат Live