Рефераты

Радиопротекторы

Радиопротекторы

Международный экологический университет им. А.Д. Сахарова

Факультет радиобиологии и экологической медицины

РАДИОПРОТЕКТОРЫ

Реферат студентки III курса:

Плотникова Анастасия Александровна

Минск

2001

СОДЕРЖАНИЕ:

Введение……………………………………………………………………………….3-4

1. Сведения из истории радиопротекторов……………………………………..5-7

2. Классификация и оценка эффективности радиозащитных средств…….8-12

3. Основные методы оценки эффективности радиопротекторов…………13-16

4. Серосодержащие радиопротекторы…………………………………………17-22

5. Амины……………………………………………………………………………..23-24

6. Антибиотики……………………………………………………………………...25-28

7. Фенолы……………………………………………………………………………29-31

8. Вещества естественного происхождения…………………………………..32-34

9. Биологическая роль меланиновых пигментов……………………………..35-37

Приложение…………………………………………………………………………..38-44

Список литературы……………………………………………………………………..45

ВВЕДЕНИЕ

Начиная с 1945 г. в связи с созданием атомных, а позднее и водородных

бомб, их интенсивными испытаниями, с развитием атомной энергетики, и

расширением сфер использования источников ионизирующего излучения в

биосферу нашей планеты стало поступать большое количество радионуклидов.

Попадая тем или иным способом в верхние слои атмосферы, последние быстро

распространились по всему земному шару, выпадая на поверхность суши,

океанов и морей.

Следствием этого явилось возрастание радиационного фона окружающей

среды, который, следует отметить, на протяжении последних нескольких

тысячелетий оставался относительно стабильным. Таким образом, в результате

активной деятельности человека все живые организмы на планете стали

подвергаться дополнительному действию радиационного излучения.

Вот почему перед человечеством неизбежно встает вопрос о проведении

мероприятий по обеспечению радиационной безопасности. В связи с этим во

всем мире ведутся активные поиски протекторов от воздействия как острого,

так и хронического радиационного облучения, в том числе и средств ранней

противолучевой терапии.

В Республике Беларусь проблема биологического действия ионизирующей

радиации, особенно малых доз, и защита от нее продолжает, по-прежнему,

оставаться одной из фундаментальных проблем в комплексе медико-

биологических наук. И в настоящее время эта проблема чрезвычайно актуальна

в связи с катастрофой на Чернобыльской АЭС, признанной самой значительной

по своему техногенному воздействию катастрофой в мире, следствием которой

явилось загрязнение значительных территорий нескольких государств.

На сегодняшний день можно с полной уверенностью утверждать, что уже ни

у кого не вызывает сомнений факт высокой значимости использования

комплексной защиты, которая, в свою очередь, наряду с методами физической

защиты, в частности - экранированием, предполагает применение

радиопротекторов.

Все противолучевые средства принято разделять на два класса -

радиопротекторы и средства лечения лучевых поражений.

Радиопротекторы - это препараты (главным образом синтетические),

которые имеют наибольший эффект при введении за некоторое время перед

облучением, присутствуют в радиочувствительных органах (нередко в

максимально переносимых и субтоксических дозах) и переводят организм в

состояние повышенной радиорезистентности. Средства лечения лучевых

поражений применяются после облучения и формирования основных синдромов

лучевого поражения. Они направлены на их преодоление за счет заместительной

и стимулирующей терапии.

Одним из недавно появившихся направлений поиска противолучевых средств

являются средства ранней патогенетической терапии. Это особый класс

соединений, которые способны повлиять на формирующийся под воздействием

ионизирующего излучения патологический процесс на ранних стадиях. Имеющиеся

литературные данные позволяют рассматривать хроническое облучение как

длительный радиационный стресс, подкрепляемый совокупностью экологических и

психосоциальных стресс-агентов., В патогенезе этого стресса решающую роль

играют активация свободнорадикального окисления, нарастающий оксидантный

дефицит и нейроэндокринная и иммунная дисрегуляция. Эффективные средства

коррекции этих изменений включают в себя следующие подклассы:

антиоксиданты, антистрессовые препараты (адаптогены) и иммуномодуляторы.

Данная работа будет посвящена рассмотрению радиопротекторов, их

классификации, механизмам действия.

СВЕДЕНИЯ ИЗ ИСТОРИИ РАДИОПРОТЕКТОРОВ

История исследования радиопротекторов насчитывает около 50 лет. Данный

класс веществ был открыт в связи с интенсивным развитием радиобиологических

исследований во всем мире после использования США атомного оружия против

Японии для бомбардировки городов Хиросима и Нагасаки. На первых этапах

изучения радиопротекторов была найдена большая группа серосодержащих

соединений, обладающих большим радиозащитным эффектом. Период с конца 50-х

до середины 70-х г.г. охарактеризовался широким поиском радиопротекторов

среди серо- и азотсодержащих препаратов. В настоящее время радиопротекторы

найдены среди широкого круга соединений (это и биологически активные

природные лекарственные препараты). Именно поэтому традиционно сложившийся

термин “химическая защита” не совсем годен для определения данной группы

веществ.

Первые предположения о механизме радиационного действия сделал

Г.Баррон, основываясь на господствующей тогда теории о непрямом действии

ионизирующей радиации: первоначальное образование химически высокоактивных

агентов, которые способны непосредственно передавать энергию ионизирующих

частиц молекулам биосубстрата и тем самым повреждать их. Он исходил из

того, что при облучении радикальные частицы нарушают в первую очередь

структуру сульфгидридных ферментов, что, по его мнению, и является причиной

развития всех постлучевых изменений.

Затем в лаборатории H.Patt было показано, что аминокислота цистеин,

введенная перед облучением, защищает животных от действия летальных доз

рентгеновского излучения. Работы H.Patt были признаны во всем мире, а их

результаты привлекли широкое внимание к радиозащитному эффекту, что привело

к быстрому накоплению новых материалов в радиационной фармакологии.

Однако по мере накопления новых экспериментальных данных стали

появляться факты, которые не укладывались в рамки “сульфгидридной” гипотезы

Баррона. Противоречащими фактами явились отсутствие данных о снижении

активности тиоловых ферментов, а также безуспешными оказались попытки

обнаружить угнетение анаэробного гликолиза сразу же или после облучения

смертельными дозами. Так как многие ферменты этих процессов содержат

тиоловые группы в активных центрах, то эти данные можно считать

опровергающими теорию Баррона. Работы Баррона сыграли важную роль в

становлении и развитии химической защиты, несмотря на недостаточность его

теории.

Следующим этапом развития явилось открытие радиозащитных свойств

тиомочевины. И хотя ее эффект невелик, это открытие заслуживает внимания,

т.к. заставило ученых предположить возможное участие аминогрупп в

противолучевом эффекте радиопротекторов. Результаты не заставили себя

ждать: бельгийским ученым Баком было синтезировано соединение (-

меркаптоэтиламин, содержащее в своем составе декарбоксилированную

аминогруппу цистеина. Это событие можно считать великим открытием в химии

радиопротекторов. (-меркаптоэтиламин оказывал высокую защиту при

эффективных концентрациях в 5-6 раз меньших, чем у цистеина.

В то время взгляды на механизм радиопротективного действия заключались

в концепции о конкуренции за свободные радикалы между защитными

соединениями и чувствительными к облучению биосубстратами. Т.е. протектор -

вещество, которое вступает во взаимодействие с активными молекулами среды и

биосубстрата раньше, чем они прореагируют между собой.

Программы поиска радиопротекторов, исследования их формакокинетики

приобрели наибольший размах в США.

В 1955 г. американскими радиобиологами был открыт S((-

аминэтилизотиуроний. Однако, как и все серосодержащие препараты, он обладал

высокой токсичностью, хотя нельзя не указать его неплохое защитное

действие.

Основной задачей, поставленной перед учеными, было изыскание

радиопротектора, обладающего большой эффективностью, и в то же время

нетоксичного и удобного в применении.

К 1959 г. было предложено около 1500 соединений, большинство из

которых было синтезировано радиобиологической лабораторией в Чикаго. Было

показано, что самыми лучшими препаратами, хотя бы частично удовлетворяющими

требованиям к радиопротекторам, стали меркаптоэтиламин и

меркаптоэтиламидин. И именно эти соединения стали базой для синтеза еще 850

препаратов, половина из которых обладало достаточно выраженными защитными

свойствами.

Очень широко также изучалось комбинированное воздействие

радиопротекторов. Особенно часто комбинировали радиопротекторы с различным

механизмом действия, например, меркаптосоединения с

метгемоглобинобразователями. Одновременно ученые пытались найти пути

пролонгирования защиты; один из таких методов - введение в состав

радиопротектора липофильных группировок до сих пор остается актуальным в

решении проблемы увеличения временной защиты.

К 1969 г. по прорамме изыскания противолучевых средств в США было

предложено более 4000 соединений. Однако для клинических испытаний были

взяты только WR 638 (аминоэтилтиофосфорная кислота) и WR 2721

(аминопропиламиноэтилтиофосфорная кислота). Испытания на добровольцах этих

двух препаратов прошли очень успешно. Но вскоре оказалось, что даже этот

“выдающийся радиопротектор” не отвечает многим требованиям использования

фармокологических препаратов.

В Советском Союзе ученые вели поиск радиопротекторов таким образом,

что исследования давали возможность полученные соединения изучать с точки

зрения моделирования радиационного эффекта от химической структуры

вещества. Этот метод поиска сильно отличался от американского пути, по

которому велся широкий скрининг препаратов. Следует отметить, что советский

подход в большей степени чем американский способствовал установлению ряда

важных закономерностей и внес определенный вклад в теорию химической защиты

от ионизирующих излучений.

КЛАССИФИКАЦИЯ И ОЦЕНКА ЭФФЕКТИВНОСТИ РАДИОЗАЩИТНЫХ СРЕДСТВ

В настоящем времени радиопротекторы найдены среди широкого круга

различных по происхождению веществ, поэтому классификация их по

фармакологическому действию сильно затруднена. В связи с этим в

радиобиологии утвердилось разделение защитных средств в зависимости от

длительности их действия и сроков развития радиозащитного эффекта.

Итак, все радиопротекторы разделены на две основные группы:

кратковременного и пролонгированного действия.

К кратковременным радиопротекторам относятся препараты, защитное

действие которых проявляется на протяжении 0.5-4 часа после введения. Они

наиболее эффективны при облучении организма максимально переносимыми

дозами. В качестве средств индивидуальной защиты эти препараты могут быть

использованы при защите от поражения ядерным оружием, перед

радиотерапевтическим облучением в медицине, в космонавтике при

долговременных полетах для защиты от солнечных вспышек.

К средствам длительной защиты относят препараты, обладающие

радиозащитой от одних суток до нескольких недель. При импульсном

воздействии ионизирующего излучения они обычно проявляют меньший эффект чем

средства кратковременной защиты. Практическое применение этих протекторов

возможно у профессионалов, работающих с ионизирующим излучением, у

космонавтов при длительных полетах, а также при долговременной

радиотерапии.

Таким образом, для каждого конкретного случая может быть подобран

соответствующий класс радиопротекторов. Но вместе с этим существуют

определенные правила, к которым он должен быть максимально приближен:

1. Препарат должен обладать достаточной эффективностью и не вызывать

побочных реакций.

2. Должен действовать быстро (в пределах первых 30 мин) и сравнительно

продолжительно (не менее 2-х часов).

3. Должен быть нетоксичным с терапевтическим коэффициентом не менее 3.

4. Не должен оказывать кратковременного отрицательного влияния на

трудоспособность человека или ослаблять приобретенные навыки.

5. Иметь удобную лекарственную форму.

6. Не должен снижать резистентность организма к другим неблагоприятным

факторам среды.

7. Не должен оказывать вредного воздействия при повторном введении или

обладать коммулятивными свойствами.

8. Препарат должен быть устойчив при хранении, сохраняя свои защитные и

фармакологические свойства не менее 3-х лет.

В радиотерапии к радиопротекторам предъявляются менее строгие

требования. Но они усложняются важным условием, а именно: необходимостью

дифференцированного защитного действия. Следует обеспечить высокий уровень

защиты здоровых тканей и минимальный - тканей опухоли. Такое разграничение

позволяет усилить действие местно примененной терапевтической дозы

облучения на опухолевый очаг без серьезного повреждения окружающих его

здоровых тканей.

Препараты кратковременного действия в зависимости от структуры и

механизма защитного эффекта подразделяются на следующие группы:

Серосодержащие соединения ((-меркаптоэтиламин (МЭА), цистамин, L-цистеин,

гаммафос, цистофос и др.).

Биологически активные амины (серотонин, 5-метокситриптамин, адреналин).

Препараты, нарушающие в организме транспорт кислорода

(метгемоглобинообразователи) или его утилизацию клетками (цианиды,

нитриты).

Производные имидазола.

Арилалкиламины.

Индолилалкиламины.

Другие радиопротекторы.

Серосодержащие радиопротекторы на современном этапе развития науки

признаны самыми эффективными. Большинство соединений этой группы являются

производными одного из первых изученных противолучевых препаратов - (-

меркаптоэтиламина. Противолучевая активность серосодержащих

радиопротекторов связывается с наличием свободной или легко освобождающейся

SH-группы. К более благоприятным фармакологическим препаратам относятся

производные тиофосфорной кислоты - тиофосфаты. У них SH-группа “прикрыта”

остатком фосфорной кислоты, что определяет их малый гипотензивный эффект и

меньшую токсичность.

Индолилалкиламины (серотонин, триптамин, 5-метокситриптамин) уступают

серосодержащим радиопротекторам только при облучении нейтронами и оказывают

защитное действие на меньших промежутках времени. К явным преимуществам

аминов относят быстрое развите защитного эффекта и большую эффективность в

малых дозах. Следует отметить, что изучение производных индолилалкиламинов

проводилось главным образом советскими учеными.

Цианиды способны блокировать активность железосодержащих дыхательных

ферментов, таких как цитохромоксидаза, которая обеспечивает перенос

электронов от цитохрома к кислороду.

Радиопротекторы пролонгированного действия. Недостатки существующих в

настоящее время радиопротекторов химических радиопротекторов (главным

образом побочные токсические эффекты и ограниченная продолжительность

действия) послужили основанием для исследования радиозащитных свойств

малотоксичных веществ биологического происхождения. В этом направлении

ведется поиск средств, котрые бы повышали общую устойчивость организма и

сопротивляемость инфекциям, а также стимулировали активность кроветворной

системы.

В настоящее время к обнаруженным веществам с такими свойствами

относятся, например, металлокомплексы порфиринов. Изучено огромное

количество веществ природного происхождения в качестве возможных

противолучевых средств. Наиболее часто исследовались различные вытяжки из

растений, микроорганизмов и другие биологические обьекты без выделения

активных веществ, а порой и без контроля за чистотой препаратов. Для

радиопрофилактики применялись сильнодействующие биологически активные

вещества в малых концентрациях: яд змеи, пчелиный яд, бактериальные

эндотоксины, горморны эстрогены.

Выраженным, статистически достоверным радиопрофилактическим действием

как при кратковременном, так и при пролонгированном облучении (с малой

мощностью дозы - 0.1 Гр/мин) обладает мелиттин (полипептид из пчелиного

яда, сосотоящий из 26 аминокислотных остатков,М-2840). Бактериальный

эндотоксин, выделенный из Salmonella typhi, смягчал пострадиационное

поражение и в том случае, если вводился через 30 мин после окончания

облучения. Защитное действие было обнаружено у полисахарида зимозана,

выделенного из дрожжевых клеток, у полисахаридов, выделенных из бактерий

Salmonella paratyphi и Proteus vulgaris.Наибольший статистически значимый

эффект отмечен у эстрадиола по сравнению с метилтестостероном,

диэтилстильбэктролом, дипропионатэстрадиолом.

В качестве противолучевых средств и препаратов, применяемых в

комбинациях с эффективными радиопротекторами, часто используются продукты

метаболизма: нуклеиновые кислоты, витамины, коферменты, углеводы, липоиды,

флавоноиды, аминокислоты, промежуточные продукты обмена.

Неспецифическое радиозащитное действие оказывает внутрибрюшинное

введение 1,5 мл кипяченого коровьего молока за 1-2 сут. до тотального

рентгеновского облучения. В других работах было выявлено радиопротективное

действие парентерального введения цельной цитратной крови, экстракта крови

солкосерила, бензольного экстракта клеток крови человека. Применение

сывороточных глобулинов с нормальными аутоантителами перед облучением (или

в лечебном варианте после него) повышало выживаемость мышей, морских

свинок, крыс, кроликов, подвергнуых летальному (-облучению в дозах ЛД80-

100/30.

К числу противолучевых препаратов пролонгированного действия

относятся также природные адаптогены. В отличие от радиопротектов они

обладают неспецифическим действием, повышая общую сопротивляемость

организма к различным неблагоприятным факторам. Адаптогены проявляют

радиозащитную способность если их вводить многократно за много дней до

облучения в дозах, ниже летальных. Они эффективны при остром, но при

пролонгированном или фракционированном облучениях дают наибольший эффект.

Омечаются также отсутствие побочных эффектов при использовании

радиозащитных доз адаптогенов. Наиболее эффективными препаратами этой

группы являются экстракты жень-шеня, элеутерококка, китайского лимонника.

Явное снижение чувствительности лабораторных животных обнаружено при

введении перорально сухого экстракта гречихи, а также при блокаде

ритикулоэндотелиальной системы с пормощью частиц угля, полестерола, латекса

или гликогена. Однако в целом механизм радиозащитного действия адаптогенов

на организм пока не выяснен. Некотрые авторы к адаптогенам причисляют АТФ и

АДФ, аденин нуклеотиды, что связано с их нормализующим влиянием на

энергетический и генетический аппараты клеток. Установлено, что

многократное 20-суточное внутримышечное введение витамина С повышало

радиорезистентность лягушек, голубей, мышей. Было замечено также, что на

радиорезистентность лабораторных животных благотворное влияние оказывает

рациональное питание, что открывает перспективы эффетивной длительной

защиты организма от летального воздействия ионизирующего излучения.

ОСНОВНЫЕ МЕТОДЫ ОЦЕНКИ ЭФФЕКТИВНОСТИ РАДИОПРОТЕКТОРОВ

Более 20 лет в радиобиологии существует термин “идеальный

радиопротектор”, но его содержание постоянно обновлялось и обогащалось.

Считается, что основные критерии применимости радиопротекторов должны

соответствовать их целевому назначению с учетом того, как они могут

использоваться:

1) как средства индивидуальной химической защиты от внешнего

воздействия ионизирующего излучения при сравнительно

кратковременном облучении в дозах с бльшой мощьностью (например,

при ядерных взрывах, солнечных вспышках);

2) для защиты от радиации при длительном облучении в дозах с малой

мощностью (например, при прохождении радиактивного облака, при

длительных космических полетах);

3) в качестве средств, повышающих устойчивость организма к радиации

при рентгено- и радиотерапии.

Существуют различные способы оценки радиозащитной способности

противолучевых средств. При этом можно использовать такие критерии как

влияние радиации на продолжительность жизни и выживаемость.

Выживаемость животных - наиболее простой способ определения защитной

способности препарата. Обычно о защитной способности судят по разности

между выживаемостью в течение месяцев после облучения в опыте и в контроле

(в процентах), либо по отношению этих показателей (индекс эффекта).

Наиболее четкие результаты наблюдаются, как правило, при дозе, равной или

превышающей величину ЛД100. В этом случае, когда доза излучения ниже, и в

контроле погибают не все животные, а протектор характеризуется 100%-ой

эффективностью, разность между опытом и контролем уменьшается и,

следовательно, данные о защитной способности протектора будут занижены.

ФИД или ФУД - фактор изменения (уменьшения) дозы определяется по

отношению равноэффективных (по поражающему действию) доз излучения в опыте

и контроле. Это отражает общепринятое представление, согласно которому

протектор как бы снижает величину поглощенной дозы радиации. Иными словами,

реакция предварительно защищенных и затем облученных животных (клеток)

слабее, как если бы они получили меньшую, чем в контроле, дозу. Для

определения величины ФУД большое значение имеет выбор доз, для

млекопитающих чаще всего используют отношение ЛД50/30 в контороле:

[pic]

При оценке противолучевой эффективности препаратов облучение животных

с протектором (опыт) и без него (контроль) необходимо производить

одновременно. Это диктуется необходимостью строгого соблюдения правил

облучения и дозиметрии. По количественному критерию выживаемости ФУД

учитывают действие различных доз излучения.

Для практической применимости препарата необходимо сопоставление

защитных и летальных доз. Такое сопоставление включает в себя

“терапевтический индекс”, “терапевтическую широту”, “протекторный индекс”.

П.Эрлих определил терапевтический индекс как отношение минимально

активной дозы к максимально переносимой. Позднее вместо них стали

использовать полулетальную дозу и дозу, излечивающую 50% животных. В

применении к радиопротекторам Д.Томсон определил терапевтический индекс

(Т.И.) как отношение полулетальной дозы к эффективной (в защитном

отношении) дозе:

[pic]

Препараты, имеющие терапевтический индекс больше 3, относятся к

слаботоксичным.

Терапевтическую широту определяют по отношению максимально

переносимойц дозы к радиозащитной дозе препарата.

Одним из качественных показателей эффективности радиопротекторов

является протекторный индекс (I). Достоинство такого способа оценки

противолучевой активности заключается в учете, наряду со степенью защиты,

терапевтической широты их действия. Протекторный индекс выражается

следующей формулой:

[pic]

где ЛД50 - доза вещества, вызывающая гибель 50% животных,

ЭД - доза вещества, приводящая к эффекту защиты,

а - процент животных, выживших при использовании эффективной

дозы, при 100%-ой гибели животных, облученных без защиты протектором;

Существующая шкала эффективности радиопротекторов позволяет

дифференцированно оценивать эффективность последних.

Шкала эффективности радиопротекторов Таблица 1

|0 - 1 |2 -5 |6 - 10 |11 - 14 |>15 |

|Неэффективен |малоэффективен |умеренно |эффективен |высоко |

| | |эффективен | |эффективен |

Для учета токсических эффектов радиопротекторов используется

коэффициент, отражающий вероятность защиты организма от радиационной

гибели:

[pic]

где СПЖ(0,0) - средняя продолжительность жизни животных в биологическом

контроле;

СПЖ(Д0,0) - то же для животных, облученных в дозе Д0 (контроль);

СПЖ(Д0,Да) - то же для животных, облученных в дозе Д0 при

использовании средства “а” защиты в дозе Да (опыт);

Этот показатель используют в том случае, когда хотят определить какая

часть особей, подвергнувшихся действию летальной дозы радиации, может быть

защищена от гибели.

В том случае, когда исследования ведутся не на живых обьектах, а на

культурах клеток, при цитогенетическом анализе используют коэффициент

защиты А, котрый отражает вероятность эффекта защиты и выражается

отношением разности между показателями поражаемости без защиты (а) и с

применением защиты (b) к величине поражаемости без защиты:

[pic]

СЕРОСОДЕРЖАЩИЕ РАДИОПРОТЕКТОРЫ

Первая попытка защитить от облучения наследственные структуры

половых клеток была сделана в 1953 г. с помощью самого: эффективного в то

время' радиопротектоpa - цистеамина (МЭА). Было проведено две серии

экспериментов с дрозофилой и мышами, в результате которых уменьшение

мутагенного действия облучения не было обнаружено.

Попытка уменьшить с помощью цистеамина мутагенный эффект облучения у

тутового шелкопряда была предпринята в 1955 г. Наряду с этим исследовался

генетический эффект цистеина, защитное действие которого против вызванной

облучением гибели было показано в 1949г. на мышах. Оказалось, что оба

препарата не уменьшают частоту радиомутаций у тутового шелкопряда.

Одновременно проводилось генетическое изучение цистеина на дрозофиле.

Защитный эффект обнаружить не удалось.

В 1955 г. был выявлен еще один радиопротектор - гуанидиновое

производное цистеамина - АЭТ. Этот препарат оказался эффективным в защите

от биологических эффектов облучения и менее токсичным по сравнению с

другими SH-про-текторами. Поэтому АЭТ неоднократно исследовали с точки

зрения его радиозащитного действия, в том числе от генетического эффекта

облучения. Так, уже в 1958 г. было изучено влияние АЭТ на мутагенный эффект

облучения у дрозофилы и установлен эффект истинной сенсибилизации вместо

защиты.

Производное АЭТ - аминоэтилизотиуромочевина. В результате ее испытаний

было обнаружено, что она не является защитным препаратом против

индуцированных облучением доминантных леталей у мышей. Авторы предполагали,

что причина полученных отрицательных результатов - низкая концентрация

препарата в зародышевых клетках в период облучения. Действительно, при

исследовании распределения цистеамина в организме мыши с помощью S35

наблюдалось неравномерное распределение протектора по органам -через 20 мин

после внутривенной инъекции концентрация препарата в семенниках была очень

низкой. Вместе с тем существовали данные о снижении стерильности облученных

животных при обработке их протекторами. Так, в одной работе обнаружено

уменьшение стерильности самок, а в другой работе - самцов облученных

мышей, которым инъецировали цистеамин. Показано, что инъекции цистеамина

крысам до облучения заметно ослабляют процесс гибели сперматогониев. Эти

факты свидетельствовали о том, что даже малое поглощение протектора

половыми клетками все-таки обеспечивает осуществление защиты их от гибели.

Были основания полагать, что агенты, защищающие зародышевые клетки от

гибели, могут защищать их и от генетических повреждений. Также было

проведено исследование по той же методике с целью перепроверки результатов

изучения генетической эффективности цистеамина. Удалось показать, что

цистеамин, не влияя на гибель эмбрионов в необлученной группе, снижает ее у

облученных животных. При облучении мышей в дозе 300 Р частота доминантных

летальных мутаций уменьшается с 26,9 до 22,7 %, а при облучении в дозе 600

Р - с 41,4 до 34,5 %.

Обнаружилось расхождение результатов с результатами, полученными в

других работах. Это можно объяснить различием в сроках введения препарата,

который вводился одними авторами за 15 мин до облучения, в то время как в

данных работах препарат вводился за 4-7 мин. Этот интервал мог оказаться

недостаточным для проникновения вещества в сперму.

Аналогичные результаты были получены и в еще одной работе при

исследовании, проведенном на мышах и на обезьянах. Внутрибрюшинное введение

цистеамина за 10 мин до облучения различными дозами рентгеновского

излучения снижало частоту хромосомных перестроек в зародышевых клетках

мышей в среднем на 42,7 %. Обезьян облучали в дозе 200 Р и также обнаружили

уменьшение числа хромосомных аберраций в сперматоцитах первого порядка на

50,8 %.

Однако вслед за работами, показавшими защитный эффект цистеамина

против мутагенного действия облучения, появилась целая серия генетических

исследований, в которых серосодержащие препараты оказались либо

неэффективными, либо усиливали мутагенное действие облучения. Так,

совместное действие АЭТ и рентгеновского излучения исследовалось на

дрозофиле . Введение АЭТ усилило радиочувствительность всех стадий

сперматогенеза. К тому же АЭТ в этих опытах оказывал и мутагенное действие,

в 2 раза увеличивая частоту сцепленных с полом летальных мутаций.

Наряду с этим было установлено, что цистеин не уменьшает выхода

сцепленных с полом рецессивных деталей, а АЭТ усиливает частоту таких

радиомутаций у дрозофилы.

Возможности уменьшения мутагенного эффекта облучения детально

исследовались с помощью сульфгидрильных соединений у дрозофилы. Изучалось

влияние трех препаратов - цистеамина, АЭТ и глютатиона на возникновение

самых разнообразных мутаций: РЛМ, транслокаций, делеций, ДЛМ, а также

потерь Х- и Y-хромосом. Изучение проводилось с учетом всех стадий

сперматогенеза. Оказалось, что ни один препарат не снизил частоты ни одного

типа мутаций ни на одной стадии развития зародышевых клеток. Более того,

цистеамин увеличивал выход всех типов радиомутаций (кроме транслокаций) на

той или другой стадии сперматогенеза. Глютатион увеличивал частоту потерь

хромосом в сперматоцитах и доминантных летальных мутаций в сперматидах.

Автор предположил, что изученные им препараты повышают частоту мутирования,

затормаживая восстановительные процессы или уменьшая время, в течение

которого происходит фиксация мутаций.

Полученные отрицательные результаты поставили под сомнение возможность

генетической защиты от облучения. Однако Кункель описал возможные физико-

химические механизмы генетической защиты и признал такую защиту

теоретически возможной. В то же время приведенные им данные генетических

исследований цистеина и АЭТ на дрозофиле показали, что цистеин не влияет на

частоту индуцированных облучением рецессивных летальных мутаций, а

усиливает мутагенное действие облучения на 37 %. Вот почему вопрос о

практической возможности защиты от радиогенетических поражений остался без

ответа.

Тем не менее среди серии отрицательных результатов были и

положительные. Эксперименты выполнялись на мышах. Показано, что и цистеин,

и АЭТ уменьшают на 6 % частоту ДЛМ, вызванных облучением в сперматидах

мышей (защита на прочих стадиях не была существенной).

Защитный эффект при использовании АЭТ обнаружен и в работах, в которых

исследовалось его влияние на эмбриональную гибель, обусловленную

возникновением ДЛМ, на разных стадиях сперматогенеза у мышей. АЭТ защищает

спермии мыши от возникновения в них радиомутаций при облучении в дозе 1200

Р и неэффективен при дозе 400 Р. Что же касается сперматид, то в них АЭТ

снизил значительно предимплантационную гибель, вызываемую дозой 1200Р, и

незначительно постимплантационную гибель при дозе 400 Р. Влияние АЭТ

исследовалось на мутагенный эффект облучения у мышей по тесту хромосомных

перестроек в сперматоцитах. Эффект АЭТ, как и в первом случае, зависел от

дозы радиации: при дозе 100 Р препарат вызывал статистически достоверную

защиту (на 30 %), а при дозе 200 Р введение АЭТ, наоборот, усиливало

повреждающее действие облучения. Исследования влияния АЭТ на частоту

доминантных летальных мутаций, индуцированных облучением у мыши,

подтвердили способность этого соединения защищать от генетических

повреждений. Правда, эффект был обнаружен только для сперматоцитов при

облучении их в дозе 400 Р. Клетки, находящиеся на прочих стадиях

сперматогенеза, защитить с помощью АЭТ не удалось. Одновременно изучался и

цистафос, но он не дал никакого защитного эффекта.

Препараты АЭТ и цистеамин изучались также и на кроликах с учетом

частоты ДЛМ. Поскольку многие авторы связывали неудачи в осуществлении

защиты половых клеток от облучения с плохим проникновением протектора в

гонады через физиологические барьеры, в данном случае проводились облучение

и обработка спермиев кролика in vitro. Защитные вещества вводились в

эякулят, и спермии таким образом облучались либо в физиологическом

растворе, либо в растворе протектора. Оказалось, что и в этом случае ни

АЭТ, ни цистеамин не уменьшали мутагенного действия f -лучей. Полученный

результат уже нельзя объяснить непроникновением протектора в гонады,

поэтому авторы считали более вероятным, что эти соединения не могут

вступать в реакции, ведущие к защитному эффекту, с соответствующими

молекулами, и в первую очередь с ДНК, сосредоточенной в головке

сперматозоида.

За последующие 10 лет появились еще 4 работы, в которых изучалось

радиозащитное действие сульфгидрильных соединений против мутагенного

эффекта облучения у животных. В одной из них исследовалось влияние

цистеамина на частоту РЛМ. У дрозофилы эффекта обнаружено не было. Эта

работа еще раз показала, что цистеамин не способен защищать половые клетки

дрозофилы от возникновения в них радиомутаций. К такому же выводу пришли и

авторы другой работы, показавшие отсутствие защитного действия цистеамина

против индуцированных облучением рецессивных летальных мутаций у дрозофилы.

Однако им удалось показать, что АЭТ снижает выход таких мутаций. Выявились

некоторые специфические особенности этого препарата. Так, АЭТ, снижая

частоту хромосомных деталей, одновременно увеличивает процент выхода

хромосомных семилеталей.

Было показано отсутствие защитного эффекта цистеамина против

индуцированных рентгеновским излучением генетических повреждений у

дрозофилы, хотя глута-тион в их опытах проявил защитное действие.

Четвертая работа выполнена на мышах. При исследовании выхода

доминантных летальных мутаций в постсперма-тогониальных стадиях обнаружено,

что при облучении в дозе 100 Р цистамин повышает постимплантационную гибель

эмбрионов, при облучении в дозе 300 Р, наоборот, снижает ее, а при

облучении в дозе 600 Р оказывается неэффективным. На выход реципрокных

транслокаций в сперматогониях мышей циста-мин не влияет.

Поскольку проникновению радиопротекторов в гонады препятствует

гематотестикулярный барьер, который начинает функционировать у

млекопитающих в первые недели постнатального периода, Померанцева

предположила, что степень защитного эффекта протектора можно увеличить,

если препарат ввести до начала функционирования этого барьера. Для проверки

данного предположения цистамин вводили беременным самкам накануне родов за

15 мин до облучения в дозе 3 Гр. В этот срок половые клетки самцов являются

гоноцита-ми. Поскольку чувствительность эмбрионов к токсическому действию

протектора выше, чем у взрослых животных, то концентрация вводимого

цистамина составляла 50 мг/кг, т. е. в три раза ниже, чем та, которая

применялась для защиты взрослых животных. Экспериментально было показано,

что циста-мин в такой дозе не снижал выхода реципрокных транслокаций,

индуцированных облучением в сперматогониях половозрелых мышей. Оказалось,

что использование цистамина для защиты самцов, облученных в эмбриогенезе,

существенно снижает уровень реципрокных транслокаций, при этом степень

защитного эффекта выше, чем при введении цистамина в трехкратной

концентрации взрослым животным.

Литературные данные о влиянии серосодержащих протекторов на мутагенный

эффект облучения, полученные разными авторами при испытании одних и тех же

препаратов на одних и тех же объектах по исходным методикам, достаточно

неоднородны. При этом на насекомых положительные результаты в подавляющем

большинстве случаев не достигнуты. Что же касается исследований,

проведенных на млекопитающих, то результаты их крайне противоречивы (табл.

2.1). Таким образом, эти сведения не дают возможности считать хотя бы какой-

либо из серосодержащих протекторов эффективным радиозащитным средством

против мутагенного эффекта облучения в половых клетках животных.

АМИНЫ

По своему радиозащитному действию против летального эффекта облучения

некоторые амины соперничают с серосодержащими препаратами. Протекторные

свойства аминов, очевидно, обусловлены создаваемой ими гипоксией. Поскольку

путем снижения концентрации кислорода можно уменьшить генетический эффект

облучения, казалось вероятным, что препараты, вызывающие гипоксию, проявят

защитное действие и против мутагенного эффекта радиации. Однако при

генетическом исследовании аминов, наиболее эффективных в защите от лучевой

гибели, в большинстве случаев получены отрицательные результаты. Инъекции

мегафена перед облучением не оказали никакого влияния на частоту

рецессивных летальных мутаций у дрозофилы.

В то же время удалось показать, что инъекции серотонина уменьшают

частоту индуцированных облучением рецессивных летальных мутаций в зрелых

спермиях дрозофилы, хотя в более поздней работе получен противоположный

эффект: под влиянием серотонина частота радиомутаций в зрелых спермиях

дрозофилы увеличивалась в 2 раза. Помимо эффекта сенсибилизации авторы

обнаружили и сильный мутаген-ный эффект серотонина - уровень спонтанных

мутаций под влиянием этого препарата повысился в 3 раза.

Аналогичные результаты получены в работе, в которой авторы использовали те

же концентрации серотонина (инъекции 1%-ного раствора) при облучении

дрозофилы в той же дозе и получили увеличение выхода рецессивных сцепленных

с полом мутаций в 2 раза.

Получен и другой результат: влияние серотонина на частоту рецессивных

летальных мутаций у дрозофилы не обнаружено. Авторы, исследовали и

эффективный радиопротектор - мексамин. Этот препарат также не защищал

половые клетки дрозофилы от возникновения в них хромосомных и хроматидных

Страницы: 1, 2


© 2010 Реферат Live