Полипропилен
Полипропилен
Пропилен
Получение
Пропилен наряду с этиленом и бутиленом относится к числу важнейших видов
сырья современной нефтехимической промышленности.
Разнообразие синтезов на основе пропилена является причиной быстрого
увеличения объема производства этого продукта. Это наглядно иллюстрируется
приведенными ниже данными (табл. 1) по планируемому производству пропилена
в США , стране с самой мощной нефтехимической промышленностью.
Значительное расширение производства пропилена намечается и в других
промышленно развитых странах.
Источником сырья для промышленного производства пропилена могут служить
продукты переработки нефти, а также природные углеводородные газы.
Пропилен получают различными методами: а) разделением газов
нефтепереработки, содержащих олефины; б) пиролизом этана и пропана,
содержащихся в газах нефтепереработки; в) пиролизом этана и высших алканов,
выделенных из природного газа; г) пиролизом жидких углеводородов.
Таблица 1 Планируемое производство мономеров в США (в тыс. т)
| | | | |
| | | | |
| | |Год | |
|Мономер | | 1960| 1975|
| |1955| | |
|Пропилен | 707| 925 | 1614|
|Бутилен | 988| 1121| 2129|
|Этилен | | 2356| 4711|
| |1608| | |
| | | | |
Под газами нефтепереработки подразумеваются газы первичной перегонки нефти,
крекинга и риформинга. Их состав зависит от технологических параметров
указанных процессов. При нефте-перегонке образуется 25—30% от общего
количества газов нефтепереработки. Ниже приведен примерный состав газов (в
мол.%), образующихся при переработке нефти на современном
нефтеперерабатывающем заводе [2]:
|Инертные газы |4,1 |
|Водород |6,1 |
|Метан |39,1 |
|Этилен |7,3 |
|Пропилен |8,9 |
|Этан |17,5 |
|Пропан |9,4 |
|Бутаны |2,6 |
|Пентаны |1,4 |
|Сероводород |3,0 |
|Двуокись углерода |0,6 |
Пиролиз углеводородов природного газа или жидких углеводородных фракций,
выделенных из нефти, протекает при температурах свыше 700° С.
В ходе технологического процесса пиролиза в основном осуществляются
следующие реакции: а) дегидрогенизация, характеризующаяся разрывом
химической связи С—Н; б) деструкция, характеризующаяся разрывом связи С—С;
в) реакции изомеризации; г) реакции типа синтезов — полимеризация,
циклизация, реакции конденсации и т. п.
Процессы дегидрогенизации и деструкции являются эндотермическими
первичными, а все остальные — экзотермическими вторичными реакциями.
При высоких температурах сначала разрывается химическая связь С—С, имеющая
меньшую энергию связи (62,8 ккал/моль), чем связь С—Н. Энергия связи С—Н
снижается при переходе от первичного к третичному атому углерода: энергия
связи атома водорода с первичным атомом углерода составляет 87,0, со
вторичным — 85,5 и с третичным — 83,0 ккал/моль .
В зависимости от способа подвода тепла в реакционную зону различают
следующие методы пиролиза углеводородов для получения пропилена: а) в
трубчатых печах с наружным огневым обогревом; б) с применением в качестве
теплоносителя перегретого водяного пара и дымовых газов; в) в
регенеративных печах с неподвижной насадкой; г) в регенеративных печах с
движущимся теплоносителем; д) окислительный пиролиз (так называемый
автотермический процесс, не требующий подвода тепла извне).
Наиболее распространенным методом получения пропилена является пиролиз
нефтяного сырья в трубчатых печах. Это объясняется небольшими капитальными
затратами на строительство трубчатых пиролизных установок и сравнительной
простотой обслуживания.
Для получения пропилена высокой степени чистоты, необходимой для химической
переработки, производят разделение пиролизного газа на отдельные
компоненты.
Таблица 2
Состав газа, полученного пиролизом бензина (Средний молекулярный вес газа
25,6.)
|Компоненты | |Выход на |
| |Объемн.|сырье, |
| |% |вес. % |
|Водород |14,2 |0,7 |
|Метан |23,8 |9,6 |
|Этилен |34,9 |24,6 |
|Этан |4,2 |3,1 |
|Пропилен |13,9 |14,8 |
|Пропан |0.8 |3,9 |
|Бутадиен |3,1 |4,2 |
|Бутилен |5,0 |6,9 |
|Бутан |0,1 |0,2 |
| | | |
|Итого |100,0 |65,0 |
Выделение и очистка
Разделение газов пиролиза целесообразно осуществлять при повышенном
давлении. Перед разделением газ сжимают компрессорами в четыре-пять
ступеней и очищают в щелочных промывных аппаратах от кислых примесей. Затем
из газа удаляют соединения ацетилена (путем селективного гидрирования на
специальном катализаторе или промывкой диметилформамидом) и подвергают его
осушке с помощью различных адсорбентов.
Предварительно очищенный от вредных примесей газ разделяют на фракцию С3,
содержащую углеводороды с двумя углеродными атомами (этан+этилен), фракцию
С3 (пропан+пропилен), фракцию C4 и т. д.
В промышленности для выделения пропилена из пиролизного газа чаще всего
применяется метод ректификации, являющийся в технико-экономическом
отношении наиболее выгодным.
Анализ
Для производства полипропилена требуется пропилен высокой степени чистоты.
Содержание таких примесей, как ацетиленовые и сернистые соединения,
кислород, окись и двуокись углерода, не должно превышать сотых и тысячных
долей процента.
Удовлетворительным считается пропилен следующего состава (в объемн. ч. на 1
млн.):
Сера ................. 10*
Вода ................. 10
Пропадиен .............. 20
Кислород ............... 10
Окись углерода ........... 10
Карбонилсульфид ........... 10
Ацетилен ............... 5
Этан + пропан ............ 2000
Для определения отдельных компонентов применяют следующие методы
аналитического контроля.
Сера. Общую серу определяют сжиганием навески в аппарате Wickbold ‘ a с
последующим переводом образовавшегося сернистого ангидрида в серный
ангидрид и далее в серную кислоту. Последнюю оттитровывают хлористым барием
в присутствии торина в качестве индикатора или же определяют,
фотометрически по реакции с хлоранилатом бария .
Ацетилен. Метод определения основан на образовании растворимых комплексных
соединений ацетиленидов серебра в концентрированных растворах серебряных
солей—азотнокислой, хлорно-кислой, фтористой и кремнефтористоводородной .
Вода. Содержание влаги в пропилене определяют в основном двумя методами:
титрованием реактивом Фишера и кулонометрическим методом . Первый способ
довольно сложен, а его точность относительно невысока. Правда, его можно
усовершенствовать, в таком случае точность анализа составит ±2 ч. на 1 млн.
Кулонометрический метод экспериментально очень прост и вместе с тем очень
точен. Он основан на электролизе влаги, уловленной из потока анализируемого
газа или пара гигроскопической пленкой, например фосфорной кислотой,между
двумя платиновыми электродами.
Окись углерода. Используются хроматографические методы .шализа (в качестве
адсорбента применяют активированный уголь, а в качестве газа-
носителя—водород) или инфракрасная спектроскопия,
Пропадиен. Наиболее совершенным методом определения считается
хроматографический, причем в качестве насадки разделительной колонки можно
использовать силикат магния, диэтил-формамид и другие вещества. Предельная
концентрация пропа-диена в пропилене определяется чувствительностью метода
.шализа.
Кислород. Наиболее известны три метода. Первый основан на взаимодействии
кислорода с водородом на твердом катализаторе , причем за ходом реакции
следят с помощью двух термопар, одна из которых расположена в протекающем
газе, а вторая— в каталитическом пространстве. Они соединены по способу
встречною включения, так что замеряется разность температур. Точность
анализа достигает 10 ч. на 1 млн., она зависит от активности катализатора в
течение всего процесса.
Свойства
Пропилен СН2=СН—СН3 (молекулярный вес 42,081) при обычных
условиях—бесцветный газ со слабым характерным запахом.
С воздухом пропилен образует взрывоопасные смеси, нижний предел
взрываемости которых равен 2,0 , а верхний— 11,1 объемн.%.
|Критические константы: | |
|температура, °С |91,9 |
|давление, кгс/см2 |45,4 |
|плотность, г/мл |0,233 |
| |0,233 |
|Температура кипения при 760 мм рт: ст., °С |-47,7 |
|Температура плавления при 760 мм рт. ст., °С |-185,25 |
|Температура воспламенения, °С |-107,8 |
|Температура самовоспламенения в смеси с |458 |
|воздухом, °С | |
|Удельная теплоемкость Ср, ккал/(кг • град) |0,363/25 |
|Теплота испарения при температуре кипения, |104,62 |
|ккал/кг |491,99 |
|Теплота сгорания газа при 25° С до жидкой Н2О и| |
|С02, ккaл/мoль | |
|Теплота образования газа (Н0298, ккал/моль |4,879 |
|Коэффициент теплопроводности, ккал/(см • сек • |3,33. 10-5 |
|град) | |
В концентрации до 4000 ч. на 1 млн. пропилен физиологически безвреден.
Оказывает слабонаркотическое действие, несколько более сильное, чем
действие этилена. При концентрации 15 объемн.% пропилен вызывает потерю
сознания спустя 30 мин, 24%—спустя 3 мин и 35—40% —через 20 сек .
Для пропилена в качестве средства огнетушения применяют двуокись углерода.
ПОЛИМЕРИЗАЦИЯ ПРОПИЛЕНА
Стереоспецифическая полимеризация
Катализаторы стереосспецифической полимеризации
Открытие стереоспецифических катализаторов представляло большой
промышленный интерес и вызвало целый ряд исследований в области
полимеризации пропилена и других олефинов. Вскоре после появления первых
сообщений о полимеризации этилена при низких давлениях фирмой Монтекатини и
Циглером были взяты совместные патенты , в которых описаны основные группы
веществ, применяемых в качестве катализаторов. Важнейшие из них следующие:
Соединения переходных металлов: TiCl4, TiCI3, TiCl2, , ацетилацетонат хрома
и т. д.
Металлорганические соединения: Al (C2H5)3 , А1(С3Н7)3-Аl(С16Н33)3, ,
алюминиевые сплавы (например, Mg3Al2) и т. п.
Детальное изучение различных каталитических систем позволило выявить новые
типы катализаторов, однако принцип их действия тот же и заключается во
взаимодействии металлов органических соединений I, II или III групп
периодической системы с соединениями переходных металлов IV—VIII групп. В
этой сиязи представляется интересным вспомнить метилтрихлортитан
(СН3ТiС13), являющийся, по мнению некоторых исследователей , эффективным
катализатором. Однако более глубокое исследование указывает на то, что
сначала происходит его разложение на треххлористый титан
RTiCl3 —> TiCl3 + R. (1)
и катализатором служит, следовательно, система ТiС1з+RТiС1з.
Изотактический полипропилен в настоящее время получают только на
гетерогенных каталитических системах, в которых переходные металлы
находятся в нерастворимой, более или менее кристаллической форме, а
металлорганическое соединение растворимо в углеводородной среде. Ниже
приводится краткое описание получения металлорганических соединений
алюминия, триэтилалюминия и диэтилалюминийхлорида, а также треххлористого
титана, представляющих собой наиболее широко распространенные и
технологически наиболее хорошо разработанные системы катализаторов.
Получение алюминийорганических соединений
Алкилпроизводные алюминия, применяемые в качестве катализаторов
стереоспецифической полимеризации пропилена, представляют собой бесцветные,
на воздухе самовоспламеняющиеся жидкости; с водой и веществами, содержащими
подвижный атом водорода (спирты, органические кислоты и т. п.), реагируют в
концентрированном состоянии со взрывом. При незначительном доступе воздуха
и влаги окисляются до соответствующих алкоксипроизводных или гидролизуются
до гидроокиси алюминия. С другими донорными соединениями (такими, как
простые эфиры, амины, сульфиды) они образуют различные устойчивые
комплексы, которые значительно меняют каталитическую активность. Высшие
гомологи, начиная с триизобутилалюминия, отличаются уже меньшей реакционной
способностью, но и они на воздухе неустойчивы, поэтому работать с ними
необходимо в атмосфере инертных газов (азот, гелий, аргон и т. п.; двуокись
углерода не является инертным газом).
Триэтилалюминий. Температура кипения 194° С при 760 мм рт. ст. (с частичным
разложением) и 63° С при 1 мм рт. ст., плотность 0,84 г/см3, показатель
преломления n20d=1,480, с углеводородами смешивается в любых соотношениях.
При нормальной температуре примерно на 90% ассоциируется с образованием
димера :
[pic]
Алюминийорганические соединения могут быть получены по общему для
металлорганических соединений методу, который заключается в обмене алкилов
между диалкилпроизводными ртути и алюминием :
[pic]
Реакция протекает с избытком алюминия при 100—120° С практически
количественно. Для крупного производства, однако, этот метод не годится из-
за трудности получения исходных алкилпроизводных ртути, с одной стороны, и
их высокой токсичности, с другой.
Циглер модифицировал этот метод, предложив заменить натрий гидридом натрия
:
[pic]
В результате реакции, которую можно осуществлять в углеводородной среде
(например, в гексане или циклогексане), получается раствор
диэтилалюминийгидрида. Этот раствор затем непосредственно переводится в
триэтилалюминий действием этилена при 70—80° С и повышенном давлении:
[pic]
Данная реакция составляет сущность так называемого прямого синтеза
триэтилалюминия , уравнение которого можно записать в виде:
[pic]
При проведении реакции возникают известные трудности; особенно сложно
приготовить алюминий в тонкоизмельченной активной форме без поверхностных
оксидных пленок. Измельчение можно проводить на вибрационных мельницах в
среде =50% раствора триэтилалюминия. Полученная суспензия активного
алюминия затем вступает в реакцию с водородом в автоклаве при 10-120° С,
давлении водорода 20—30 ат и в присутствии в качетве катализатора пористого
титана:
[pic]
На следующей стадии проводится реакция (7), и весь цикл повторяется
сначала.
Хотя в настоящее время в промышленности применяются оба посмотренных метода
синтеза триэтилалюминия, прямой синтез в будущем непременно получит
преимущественное развитие, так как в этом случае практически отсутствуют
трудно утилизируемые отходы производства .
Диэтилалюминийхлорид можно с успехом применять вместо триэтилалюминия в
каталитических системах с ( , ( , (-модификациями треххлористого титана.
Физические свойства диэтилалю-минийхлорида: температура кипения при 760 мм
рт. ст. 208° С, при 0,9 мм рт. ст. 44° С; плотность 0,9736 г/мл;
температура плавления —74° С; вязкость 1,45 спз при 23° С. С алифатическими
и ароматическими углеводородами смешивается в любом соотношении. Степень
ассоциации до мостиковой димерной структуры выше, чем у триэтилалюминия и
этилалюминийхлорида.
В производстве диэтилалюминийхлорид получают из этилалюминийсесквихлорида,
однако вместо реакции с NaСl применяется частичное дегалогенирование
металлическим натрием по схеме:
[pic]
Влияние условий проведения реакции на процесс полимеризации .
Основные параметры процесса полимеризации, а именно общая скорость
процесса, стереоизомерный состав полимера и его молекулярный вес, зависят
от химической и физической природы катализатора, полимеризационной среды и
физических условий, а также степени чистоты отдельных компонентов системы и
их концентрации.
Линейный полиэтилен на таких катализаторах может образовываться как в
гомогенной, так и в гетерогенной фазе, поскольку он не имеет
пространственных изомеров. Для получения же изо-тактического полипропилена
предпочитают применять твердые хлориды титана (прежде всего TiCl3) в
сочетании с алюминийорганическим компонентом. О роли твердой фазы говорит
тот факт, что в присутствии каталитического комплекса металлорганического
соединения с переходным металлом, адсорбированного на аморфном носителе,
при полимеризации пропилена образуется атактический аморфный продукт. Тот
же комплекс, адсорбированный на кристаллическом носителе (треххлористый
титан), позволяет получить изотактический полимер . Следует отметить, что
самой по себе регулярности решетки носителя еще недостаточно для того,
чтобы катализатор приобрел высокую стереоспецифичность; носитель должен
также удовлетворять определенным стерическим условиям, связанным с
величиной его ионов и расстоянием между ними. Так, в присутствии
трехбромистого или трехиодистого титана атактического полимера образуется
больше, чем при применении треххлористого титана.
Льюисовский характер обоих каталитических компонентов предопределяет и
выбор среды. Наиболее выгодной средой считаются инертные углеводороды.
Поскольку треххлористый титан действует как сильный адсорбент, наиболее
предпочтительны алифатические углеводороды (гептан, гексан, пропан и т.
п.), которые сорбируются в меньшей степени, чем ароматические.
Влияние концентрации мономера и компонентов катализатора
Из приведенных данных по механизму стереоспецифической полимеризации
следует, что активные центры образуются при сорбировании
алюминийорганического компонента на поверхности твердой фазы. Поэтому в
первую очередь именно этот компонент будет оказывать влияние на скорость
образования полимера и его стереорегулярность.
Наибольший выход изотактического полипропилена получается при использовании
треххлористого титана с малой удельной поверхностью и хорошо развитыми
кристаллами. Однако на таком катализаторе полимеризация протекает медленно.
При увеличении удельной поверхности применяемого катализатора одновременно
со скоростью реакции возрастает содержание атактической фракции и
стереоблоков в полимере, что связано, очевидно, с увеличением дефектов в
твердой фазе.
Очевидно, что на изломах и гранях кристаллов мономерные звенья могут
присоединяться к растущей цепи из разных положений, вследствие чего
образуются аморфные полимеры или—при более специфических условиях—в большей
или меньшей степени регулярные стереоблоки (стереоизомерный сополимер). Чем
мельче частицы твердой фазы, тем больше изломов относительно плоскостей,
отличных от обычной плоскости 001 (обозначения индексами Миллера), и, как
результат, часть поверхности имеет иные геометрические и химические
свойства.
Алкилбериллий, содержащий металл с наименьшим ионным радиусом, в
присутствии треххлористого титана дает самый высокий выход изотактического
полипропилена при больших скоростях реакции полимеризации. На степень
изотактичности и скорость реакции оказывают влияние также стерические и
химические свойства заместителей металлорганического соединения. При
полимеризации пропилена в присутствии триметилалюминия образуется полимер с
большим содержанием атактической фракции, чем при применении
триэтилалюминия. Стереоспецифичностъ, однако, падает и при высших алкилах.
Если один алкил алюминия заменить на галоген, то скорость реакции снижается
в ряду F>Cl>Br>I; в том же порядке увеличивается молекулярный вес. Натта в
результате проведенных опытов по полимеризации пропилена с треххлористым
титаном в среде толуола пришел к заключению, что стереорегулярность падает
в ряду
Аl(С2Н5)2I > Аl(С2Н5)2Вr > Al(С2Н5)2С1 > Аl(С2Н5)2
Алюминийдигалогениды в присутствии треххлористого титана полимеризации уже
не инициируют; при введении же в систему соответствующего донора (амины,
пиридин) можно получить полимер с высокой стереорегулярностью. Донор и
металлорганическое соединение лучше всего брать в соотношении 1 :2.
Влияние температуры
Суммарная энергия активации полимеризации пропилена на каталитической
системе треххлористый титан — триэтилалюминий равна 14 ккал/моль, причем 4
ккал/моль приходится на долю теплоты растворения мономера в н - гептане .
В отличие от константы скорости молекулярный вес и стереоизомерный состав
полимера, полученного на системе треххлористый титан—триэтилалюминий, при
температурах ниже 80° С изменяются относительно мало. Повышение
температуры, способствующее уменьшению молекулярного веса, вызывает также и
заметное изменение содержания экстрагируемых фракций. Полимеры,
синтезированные при 100° С, содержали лишь 3% аморфной фракции . На
катализаторе Т1С13-А1(С3Н5)2I и других известных каталитических системах
полимеризация проходит с более низкой скоростью, чем в присутствии TiCl3 -
AIR3 или TiCI3 - BeR3.
Влияние примесей
Оба компонента каталитической системы охотно вступают в реакцию с
веществами, в молекуле которых есть атом со свободной электронной парой. В
случае триэтилалюминия стремление заполнить недостающую электронную пару на
алюминии настолько велико, что это вещество в нормальных условиях
существует как димер с довольно большой устойчивостью. Димер энергетически
более устойчив (почти на 10 ккал/моль). Триалкилалюминий образует с
донорами комплексные соединения, некоторые из них настолько устойчивы, что
их можно перегонять, а попытка разделить их на первоначальные компоненты
часто приводит к деструкции всей молекулы .
Благодаря наличию свободных орбит переходный металл образует
координационные связи с мономером за счет п-электронов последнего. Подобное
взаимодействие имеет место с молекулами, имеющими свободную электронную
пару. Соединения, обладающие способностью к координации, покрывают часть
активной поверхности катализатора, некоторые из них действуют как
каталитические яды и влияют на ход полимеризации и свойства полимера.
Аналогичным действием обладают и ненасыщенные углеводороды (пропадиен,
ацетилены), которые к тому же не реагируют с триалкилалюминием и сильно
сорбируются треххлористым титаном. Эти вещества снижают скорость
полимеризации и модифицируют свойства полимера.
Примеси можно разделить на две группы в зависимости от того, действуют ли
они как ингибиторы или как промоторы полимеризации. Сначала рассмотрим
соединения с ингибирующими свойствами, часто присутствующие в сырье. При
температуре полимеризации триалкилалюминий образует с полярными примесями
комплексы, которые на дальнейший ход полимеризации не оказывают
существенного влияния. Примеси, сорбированные на твердой фазе, где
происходит реакция роста цепи, действуют гораздо интенсивнее. При малых их
количествах наблюдаются индукционный период и снижение скорости
полимеризации по окончании этого периода . Изменяется и стереоизомерный
состав полимера: обычно повышается содержание аморфных и стереоблочных
фракций.
Продолжительность индукционного периода определяется теми факторами, от
которых зависит скорость удаления сорбированного вещества с поверхности
твердой фазы. Примеси, которые слишком сильно сорбированы или из-за
стерических затруднений не могут участвовать в реакции роста цепи (в роли
сополимера), действуют как сильные ингибиторы процесса полимеризации. Из
доноров наиболее сильными каталитическими ядами являются COS, CS2, R2S, СО,
т. е. вещества, известные своим ингибирующим действием и способностью
образовывать координационные связи. Из ненасыщенных углеводородов наиболее
эффективным ингибитором считается пропадиен. Ацетиленистые соединения также
снижают скорость полимеризации. Однако сорбция их треххлористым титаном не
настолько сильна, чтобы исключалась возможность сополимеризации. Ацетилен
образует с пропиленом сополимеры, которые уже при ничтожных концентрациях
ацетилена в системе (10 ч. на I млн.) имеют сине-фиолетовую окраску,
свидетельствующую о наличии сопряженных двойных связей и, следовательно, об
образовании сополимера с блочной структурой. Метилацетилен цветных
сополимеров не дает.
Вторую группу примесей составляют вещества, имеющие ионный характер или
приобретающие его после сорбции на поверхности твердой фазы. Из доноров
значительный интерес представляют вещества, которые способны образовывать
ониевые соединения. Наибольшей активностью отличаются соединения на основе
азота, такие, как амины, пиридин и т. п. При применении треххлористого
титана с малой 2удельной поверхностью (хорошо развитые кристаллы) они вдвое
повышают скорость реакции уже в концентрациях 10-4 моль /л, в то время как
диэтиловый эфир при прочих равных условиях—всего лишь в 1,3 раза.
Доноры обычно увеличивают молекулярный вес полимера. Исключение составляют
вещества, содержащие группу, способную вызвать передачу цепи. По влиянию на
величину молекулярного веса активаторы можно расположить, например, в
следующий ряд:
H2S < RSH < RSR < CS
Вещества, способные образовывать ониевые соли, уменьшают количество
образующегося при полимеризации продукта, растворимого в холодном и кипящем
гептане (аморфные фракции и стереоблоки). Частично, однако, меньшая
растворимость в гептане обусловлена более высоким молекулярным весом
полимера .
Регулирование свойств продукта
Полученный в результате стереоспецифической полимеризации продукт наряду с
изотактическим полимером содержит также некоторое количество атактической
фракции и так называемые стереоблокполимеры, в макромолекулах которых
чередуются на противоположных сторонах цепи не отдельные группы СНз, а
целые изотактические участки этих групп. Катализатор находится в массе
образовавшегося полимера, и поэтому его необходимо либо удалить, либо
перевести в химически инертную форму, не вызывающую деструкции и
нежелательного окрашивания полимера. Содержание аморфных и стереоблочных
фракций оказывает влияние на способность полимера к переработке и свойства
получаемых изделий и должно быть отрегулировано в соответствии с
назначением полимера. Другим параметром, который необходимо варьировать в
широких пределах в зависимости от назначения полимера, является величина
молекулярного веса.
Регулирование молекулярного веса
Как уже упоминалось, увеличить молекулярный вес полимера можно с помощью
различных добавок (например, аминов) или самих каталитических систем
(AlR2X—TiCI3 и др.). Снизить молекулярный вес можно тремя методами: а)
выбором режима полимеризации (катализатор, температура, концентрация
мономера и т. п.); б) добавлением веществ, вызывающих передачу цепи; в)
направленной деструкцией готового полимера.
Об изменении величины молекулярного веса с изменением условий ведения
процесса полимеризации достаточно подробно говорилось выше. На практике
молекулярный вес полимера чаще всего регулируют с помощью агентов передачи
цепи. Впервые для этой цели был применен водород. Его действие зависит от
концентрации в жидкой фазе. При прочих равных условиях (концентрация
катализатора и мономера, температура) снижение молекулярного веса в первом
приближении пропорционально корню квадратному из парциального давления
водорода . В низших углеводородах (С3) растворимость водорода повышается с
ростом температуры. Эта кажущаяся аномалия теоретически хорошо исследована.
Водород, применяемый в качестве агента передачи цепи, должен быть очень
чистым (в противном случае происходит резкое снижение скорости реакции).
Водород, полученный при пиролизе газов, обычно содержит СО, а
электролитический водород—большое количество кислорода и воды (сотни частей
на миллион). Однако и очень чистый водород, взятый в высоких концентрациях,
снижает скорость реакции на 30—40%. Содержание аморфного полимера с
уменьшением молекулярного веса повышается незначительно. Передачу цепи с
помощью водорода можно с успехом использовать и для получения
волокнообразующего полипропилена с [(] =1.
Другим эффективным агентом передачи цепи является диэтилцинк . Его действие
было открыто Натта при изучении металлорганнческих соединений, способных
образовывать активный каталитический комплекс с треххлористым титаном. В
последнее время опубликовано большое число исследований, посвященных
регулированию молекулярного веса полимера ; методом направленной
деструкции. Деструкция углеводородных полимеров в теоретическом отношении
тесно связана с процессами крекинга и пиролиза углеводородов .
Экстракция аморфных и стереоблочных фракций из полимера
В зависимости от способа полимеризации образуется полимер разного
стереоизомерного состава. Структура полипропилена может быть нескольких
типов (изотактическая, синдиотактическая, атактическая и стереоблочная).
Различие между указанными структурами молекулярной цепи обусловливается
неодинаковым положением метальной группы у третичного атома углерода.
Изотак-тнческий и синдиотактический полимеры имеют совершенно регулярно
построенные цепи, располагающиеся вдоль винтовой оси (спирали). Структуру
называют изотактической, если все метильные группы находятся по одну
сторону от воображаемой плоскости главной цепи. Структура с регулярно
чередующимся расположением метильных групп по разные стороны главной цепи
называется синдиотактической, а структура со стерически нерегулярной
последовательностью метильных групп—атактической. Стерео-изомеры
различаются между собой по свойствам. Атактический полипропилен
представляет собой каучукоподобный продукт с высокой текучестью,
стереоблокполимеры обнаруживают уже некоторую прочность, хотя и они
обладают свойствами эластомеров. Изотактический полипропилен — вязкий
продукт с высоким модулем упругости.
Низкомолекулярные атактические фракции необходимо удалить из полимера, так
как со временем они мигрируют к поверхности изделий, делая их липкими на
ощупь. Стереоблокполимеры хорошо совмещаются с изотактическим
полипропиленом. В известной степени они действуют как внутренний
пластификатор и снижают кристалличность полимера. Их удаляют из полимера
полностью или хотя бы частично в зависимости от назначения изделия. Для
некоторых целей (в частности, для получения высокопрочного волокна)
требуется полипропилеи, обладающий практически 100%-ной степенью
изотактичности.
Атактические и стереоблочные фракции удаляют из полимера экстракцией.
Растворимость этих фракций зависит от применяемого растворителя и
температуры. Экстракция обычно производится алифатическими углеводородами.
Хлорированные растворители отличаются несколько лучшей растворяющей
способностью, однако они отщепляют хлористый водород, который и в
незначительных концентрациях вызывает коррозию оборудования и привносит в
полимер следы железа, существенно снижающие его термоокислительную
стойкость.
Схема производства полипропилена фирмы Монтекатини
В полимеризационный автоклав 4 , снабженный охлаждающей рубашкой , в один
прием загружают оба компонента катализатора и мономер. Полимеризацию ведут
при температуре =80° С и давлении до 30 ат в определенном количестве
растворителя (гептана). Как только скорость полимеризации падает
(вследствие конверсии мономера) ниже некоторого предела, часть реакционной
массы (30—50% объема автоклава) переводят в аппарат для дегазации 5. В
автоклав 4 из аппарата 1 подают нужное количество дисперсии катализатора в
гептане, а также свежий мономер с таким расчетом, чтобы уровень жидкости в
автоклаве был таким же, как вначале. При крупнотоннажном производстве
параллельно устанавливают 6—10 полимеризационных автоклавов, рабочие циклы
(загрузка и разгрузка) которых соответствующим образом смещены друг
относительно друга. Все операции на данной стадии процесса выполняются
автоматически по заданной программе. На следующей стадии полимер отделяют
от растворителя и содержащихся в нем атактических фракций. Затем производят
экстракцию остатков катализатора спиртами, а также промывку или отпарку
полимера. После сушки порошковый полипропилен подвергают грануляции на
двухчервячной экструзионной машине с вакуум-отсосом.
[pic][pic]
Сополимеризация пропилена
Наряду с изучением физических и механических свойств полипропилена внимание
исследователей во всем мире привлекает сополимеризация пропилена с другими
мономерами в целях модификации свойств продукта. В круг проблем, связанных
с сополимеризацией на стереоспецифических катализаторах, помимо изучения
состава сополимера и содержания исходных мономеров,входит также изучение
пространственного строения образующихся продуктов с учетом примененной
комбинации мономеров и каталитической системы.
Наибольшие успехи пока достигнуты при совместной полимеризации этилена с
пропиленом, поэтому данный вопрос целесообразно осветить более подробно.
Сополимеризация этилена с пропиленом
Введение небольшого количества пропилена или бутена-1 в цепь полиэтилена,
синтезированного на циглеровском или окисно-хромовом катализаторе, вызывает
резкое снижение степени кристалличности продукта и, как следствие,
улучшение ряда его технически ценных свойств. Исследованиями установлено,
что в присутствии 21 группы СН3 на 1000 групп СН3 главной цепи (т. е.,
=6,25 вес.% пропилена) кристалличность полиэтилена снижается почти на 20%.
Подобный же эффект дают 14 групп C2H5 на 1000 групп СН2 (т. е. -5,6 вес.%
бутена-1).
Аморфные сополимеры этилена с пропиленом с содержанием 30—70% пропилена,по
всей вероятности, найдут применение в резиновой промышленности. Методам
вулканизации, хлорирования и хлорсульфонирования с последующей
вулканизацией этих продуктов уже посвящено большое число обстоятельных
исследований.
Улучшения свойств сополимеров можно достигнуть полимеризацией
трехкомпонентной системы, состоящей из этилена (25—75%), пропилена (25—75%)
и диена с одной концевой двойной связью и одной изолированной внутренней
двойной связью (0,1—1,0 моль/кг}. Из литературных источников известно , что
названные тройные сополимеры по своим свойствам аналогичны бутилкаучуку и
поддаются переработке не хуже обычных типов синтетических каучуков.
Достоин упоминания метод получения блоксополимеров этилена с пропиленом,
структуру которых можно представить так:
[pic]
Растущие цепи имеют относительно большую продолжительность жизни, и при
поочередном введении сомономеров в каталитическую систему (например,
четыреххлористый титан—триэтил-алюминий в гептане) можно произвольно
управлять ростом и чередованием рядов отдельных мономеров. По своим
свойствам такие продукты отличаются от смесей гомополимеров и от
классических статистических сополимеров.
Структура полипропилена
В зависимости от условий проведения процесса полимеризации пропилена
получаются полимеры с различной молекулярной структурой, которая определяет
их физико-механические свойства и, как следствие, пригодность для той или
иной цели.
Стереоизомерия
Открытие стереоспецифической полимеризации положило начало новому этапу в
исследовании структуры и свойств полипропилена. В зависимости от условий
полимеризации структура полипропилена может быть нескольких типов, которые
различаются пространственным расположением метальных групп по отношению к
главной цепи полимера .
а) Изотактическая структура—все группы СН3 находятся по одну сторону от
плоскости цепи:
[pic]
В действительности, однако, макромолекулы изотактического полипропилена
имеют третичную симметрию, так как группы СН3 вдоль главной углеводородной
цепи располагаются по спирали.
б) Синдиотактическая структура—группы СН3 располагаются строго
последовательно по разные стороны от плоскости цепи:
[pic]
Изотактическая и синдиотактическая молекулярные структуры могут
характеризоваться различной степенью совершенства пространственной
регулярности.
Структуру с неупорядоченным расположением метильных групп называют
атактической:
[pic]
[pic]
Промежуточное положение между чисто атактической и чисто изотактической
структурами занимают стереоблокполимеры, в макромолекулах которых регулярно
чередуются различные по длине изотактические и атактические участки.
На рис. 4.2 показаны типы пространственной структуры цепи линейного
полипропилена.
Стереоизомеры полипропилена (изотактические, синдиотактические,
атактические и стереоблочные) существенно различаются по механическим,
физическим и химическим свойствам. Атактический полипропилен представляет
собой каучукоподобный продукт с высокой текучестью, температура плавления
=80° С, плотность 0,85 г/см3 , хорошо растворяется в диэтиловом эфире и в
холодном н-гептане. Изотактический полипропилен по своим свойствам выгодно
отличается от атактического; в частности, он обладает более высоким модулем
упругости, большей плотностью (0,90—0,91 г/см3), высокой температурой
плавления (165—170°С), лучшей стойкостью к действию химических реагентов и
т. п. В отличие от атактического полимера он растворим лишь в некоторых
органических растворителях (тетралине, декалине, ксилоле, толуоле), причем
только при температурах выше 100° С. Стереоблок-полимер полипропилена при
исследованиях с помощью рентгеновских лучей обнаруживает определенную
кристалличность, которая не может быть такой же полной, как у чисто
изотактических фракций, поскольку атактические участки вызывают нарушения в
кристаллической решетке .
Определение стереоизомерного состава полипропилена обычно производят
методом последовательного экстрагирования , основанным на резком различии в
растворимости аморфной и кристаллической фракций. Как правило,
экстрагирование осуществляют кипящими растворителями в такой
последовательности: вначале из полипропилена ацетоном экстрагируют
Страницы: 1, 2
|