Рефераты

Энергетика СВЧ в народном хозяйстве: применение СВЧ-нагрева в пищевой промышленности

[pic]

Рис. 7. Схема устройства плазмотрона волноводного типа:

1 — прямоугольный волновод (b — размер узкой стенки); 2 — экранирующие

запредельные трубки; 3 — разрядная диэлектрическая трубка; 4 — плазменный

шнур; 5 — согласованная нагрузка.

Плазма имеет вид шнура или цилиндра с диаметром dпл, на 2 — 3 см

меньшим внутреннего диаметра разрядной трубки D, и длиной, лишь немного

превышающей размер узкой стенки прямоугольного волновода b. Плазменный шнур

ограничен по длине в тех точках запредельных экранных трубок, где СВЧ

мощность уже недостаточна для поддержания разряда, т.е. горения плазмы.

Одним концом плазмотрон волноводного типа присоединен к СВЧ

генератору, а другим — к согласованной нагрузке или к замкнутому на конце

отрезку прямоугольного волновода (короткозамыкателю). Одна часть СВЧ

энергии поглощается в плазме, а оставшаяся доля частично проходит за разряд

и частично отражается от него.

Для компенсации отраженной волны между генератором и разрядной

трубкой включают различные подстраивающие элементы, что эквивалентно

подключению разрядной области через трансформатор связи. Плазмотроны с

трансформаторами связи принято называть плазмотронами резонаторного типа.

Более однородные по радиусу характеристики плазмы имеют место в

плазмотроне на основе радиальной линии, представляющей собой два

параллельно расположенных диска, в центре которых перпендикулярно дискам

проходит разрядная трубка. В такой радиальной линии должна быть возбуждена

радиальная ТЕМ волна, сходящаяся равномерно со всех сторон к плазменному

шнуру, находящемуся на оси системы.

Примеры плазмотронов волноводного типа. Изображенный на рис. 7

плазмотрон представляет собой волноводно-коаксиальный переход, причем

внутренним проводником коаксиальной линии служит плазменный шнур, а внешним

— экранирующие металлические трубки. В данном плазмотроне необходимо

учитывать активные потери в плазменном шнуре.

При выбранных геометрических размерах плазмотрона и рабочей частоте

СВЧ генератора главным расчетным параметром является температура плазмы.

Однако для построения обобщенных характеристик плазмотронов, не зависящих

от свойств и термодинамического состояния плазмообразующего газа, а также

для удобства математических расчетов оказалось удобнее вместо температуры

использовать в качестве основного расчетного параметра отношение радиуса

плазменного шнура rпл к глубине поверхностного слоя на плазменном

образовании s. При расчете s учитываются свойства и термодинамическое

состояние газа, в котором будет образована плазма.

На рис. 8 приведены расчетные кривые Kстv в подводящем волноводе

axb=72x34 мм с волной H10 и коэффициента передачи СВЧ энергии в разряд h

для плазмотрона с согласованной нагрузкой (пунктирные линии). Рабочая длина

волны 12,6 см; внутренний диаметр экранирующих трубок 2R=22 мм; диаметр

плазменного шнура 2 rпл =7 мм. Отношение rпл /R в расчетные формулы входит

под знаком логарифма, поэтому оно мало влияет на характеристики

плазмотрона. В качестве плазмообразующего газа использовался азот при

атмосферном давлении.

На рис. 8 приведены также кривые отношения мощности Pпад, подводимой

к плазмотрону, к удельной мощности Pпл, поглощаемой в единице длины

плазменного столба, находящегося в центре широкой стенки волновода. Эти

кривые имеют минимум, в котором потребляемая от СВЧ генератора мощность

минимальна. Правые ветви этих кривых соответствуют устойчивым режимам

разряда.

[pic]

Рис. 8. Расчетные зависимости коэффициента передачи h, Kстv и

Pпад/Pпл от отношения rпл/s для плазмотронов волноводного типа с

согласованной нагрузкой и короткозамыкателем.

Действительно, и при постоянной мощности, подводимой к плазмотрону, в

разряде устанавливается определенная температура. Если режим работы

соответствует некоторой точке на правой ветви кривой, то случайные малые

изменения температуры в разряде вызывают ряд процессов, возвращающих

температуру к стационарному значению. Если температура случайно уменьшится,

то длина разряда уменьшится, что приведет к увеличению удельной мощности

Pпл и разогреву плазмы. Если температура случайно возрастает, то длина

разряда возрастает и Pпл уменьшится, что приведет к остыванию плазмы. Этот

механизм саморегулирования поддерживает в разряде постоянную температуру,

соответствующую СВЧ мощности, подводимой к разряду.

Граница устойчивости разряда соответствует значениям rпл/s @ 0,3ё0,6.

При этом, например, температура плазмы азота равна 5500 — 5800K. Удельная

мощность Pпл, требуемая для поддержания в плазме заданной температуры,

может быть определена по кривой, приведенной на рис. 9. Далее по кривым

Pпад/Pпл на рис. 8 можно определить и значение Pпад, при которой в плазме

температура равна требуемому значению.

Если проанализировать приведенные на рис. 8 и 9 данные, то можно

сделать следующие важные для практики выводы.

В плазмотроне с короткозамыкателем осуществляется значительно более

эффективное использование СВЧ энергии, чем в плазмотроне с согласованной

нагрузкой: hmax соответственно равны 0,97 и 0,5; минимальные мощности СВЧ

генератора, требуемые для поддержания устойчивости разряда, равны

соответственно 0,5 и 1,2 кВт. Минимальная температура СВЧ разряда в азоте

при атмосферном давлении равна 5500K.

[pic]

Рис. 9. Зависимость и от температуры СВЧ разряда в азоте при

атмосферном давлении.

При экспериментах с рассматриваемыми плазмотронами расход газа

подбирался минимально возможным с тем, чтобы сохранить стабильность

разряда. В этом случае теплоотвод от разряда определяется в основном

теплопроводностью газа на стенки разрядной трубки. Длина плазменного столба

в плазмотроне с согласованной нагрузкой равнялась 4 см при поглощаемой в

разряде мощности 900 Вт, что меньше расчетного значения на 20% — 30%.

Объясняется это тем, что при расчете не учитывался спад температуры на

концах плазменного шнура и вынос тепла из плазмы потоком газа при

определении значения Pпл в соответствии с кривой, изображенной на рис. 9.

Однако приведенные на рис. 8 и 9 расчетные данные дают удовлетворительную

точность и могут быть использованы для предварительных расчетов

конструктивных параметров плазмотронов.

Рассмотрим пример практического применения плазмотронов.

СВЧ плазменный источник возбуждения спектра. Наиболее часто в

качестве источника тепла для разогрева порошков веществ, исследуемых с

помощью анализаторов спектра, использовались газовые горелки. Для них

характерна достаточная стабильность горения, а главным недостатком является

внесение в зону нагрева продуктов горения газа, которые во многих случаях

могут загрязнять обрабатываемый или анализируемый материал. Кроме того,

температура, даваемая газовыми горелками, для анализа многих элементов

недостаточна. С помощью плазмотронов может быть получен в атмосфере

защитных газов — азота, гелия или аргона — стабильный нагрев до 8000K без

каких-либо загрязнений. Для спектрального анализа применяют и электрические

дуги постоянного и переменного токов. Они позволяют получить требуемую

температуру, но не дают желаемой стабильности и вносят загрязнения

продуктами разрушения электродов. Поэтому при их использовании

воспроизводимость и точность анализа недостаточны.

Высокотемпературный стабильный плазменный источник возбуждения

спектра представляет собой установку, состоящую из двух блоков — блока

питания и СВЧ блока, в который входят магнетрон M571 с регулируемой

непрерывной мощностью от 0 до 2,5 кВт на длине волны 12,6 см и плазмотрон

волноводного типа с согласованной нагрузкой.

[pic]

Рис. 10. Схематическое изображение СВЧ блока плазменного источника

возбуждения спектра типа ПВС-1:

1 — магнетрон; 2 — плазмотрон волноводного типа; 3 — согласованная

нагрузка; 4 — кварцевая трубка для подачи плазмообразующих газов и

образования плазменного столба; 5 — конденсор; 6 — щель анализатора

спектра.

Схема СВЧ блока применительно к спектральному анализу приведена на

рис. 10. Газ для образования плазмы подается в трубку из кварцевого стекла

через завихряющую форсунку, не показанную на схеме. Через ту же форсунку

или вдоль оси кварцевой трубки по отдельной трубке подается анализируемое

вещество, которое распыляется в виде аэрозоля. Излучение плазменного столба

через конденсатор проектируется на щель анализатора спектра, с помощью

которого производится анализ обычными спектральными методами. Расход газа

может составлять 8 — 10 л/мин при давлении, близком к атмосферному,

плазменный столб длиной 25 — 30 мм имеет диаметр — 5 — 8 мм. Коэффициент

передачи СВЧ энергии в разряд 0,55 — 0,6.

Время анализа по сравнению с химическими методами сокращается в 2 — 5

раз. Вследствие высокой температуры, высокой чистоты в зоне нагрева и

высокой стабильности плазменного источника появилась возможность

анализировать как легко- и средневозбудимые, так и трудновозбудимые

элементы, а также определять с высокой точностью средние и большие

концентрации элементов. Кроме того, из-за отсутствия электродов открылась

возможность анализа кислотных и щелочных растворов.

Практическое использование источника ПВС-1 показало, что температура

плазмы СВЧ разряда равна 4000 — 8000K, коэффициент вариации,

характеризующий нестабильность самого источника, 1,5% — 2%, а при анализе

коэффициент вариации 2% — 3%, чувствительность анализа 10[pic] — 10[pic]

мг/мл.

Излучатели СВЧ энергии

Излучатели СВЧ энергии фактически представляют собой передающие

антенны того или иного типа, направляющие СВЧ энергию на обрабатываемый

участок материала; СВЧ излучатели необходимы там, где надо нагревать часть

большого предмета.

Подобные излучающие устройства необходимы и при СВЧ сушке некоторых

материалов, и при влагометрии, и при стерилизации ран на поверхности тела,

и при воздействии на культуры микроорганизмов и т.д.

[pic]

Рис. 11. СВЧ облучатель в виде открытого конца волновода

прямоугольного поперечного сечения.

Простейшим СВЧ излучателем является открытый конец волновода (рис.

11). Для ограничения высокочастотных токов по фланцу, а следовательно, и

СВЧ поля применяют специальные канавки 1, заполненные поглощающим

материалом (b — размер узкой стенки волновода).

Открытый конец стандартного прямоугольного волновода является весьма

эффективной антенной. Даже без каких-либо подстроечных устройств Kстv в

волноводе равен 1,6, т.е. от открытого конца волновода отражается менее

5,5% передаваемой по волноводу мощности.

Меньшую площадь облучения дает излучатель в виде открытого конца H-

образного волновода (рис. 12). На этом рисунке пунктиром показана зона

максимального нагрева.

[pic]

Рис. 12. СВЧ облучатель в виде открытого конца H-образного волновода.

Наилучшее согласование со свободным пространством имеет рупорная

антенна с корректирующей диэлектрической линзой 1 в ее раскрыве (рис. 13).

Она применяется либо для создания плоского фронта СВЧ волн (рис. 13, a),

либо фокусировки СВЧ излучения на небольшой площади подобно обычной

двояковыпуклой линзы в оптическом диапазоне. Минимальный диаметр пятна в

фокусе получаетя примерно равным рабочей длине волны l (рис. 13, b).

[pic]

Рис. 13. СВЧ облучатель в виде рупорно-линзовой антенны для создания

плоского фронта волны (a) и для фокусировки излучения (b).

На рис. 14 показан рупорно-параболический облучатель, применяемый для

раскалывания бетонных плит. При l=12,6 см и Pизл=2,5 кВт бетонная плита

толщиной 200 мм раскалывается через несколько секунд или минут после начала

облучения.

[pic]

Рис. 14. СВЧ облучатель в виде рупорно-параболической антенны.

При использовании электромагнитных волн коротковолновой части

сантиметрового и миллиметрового диапазонов применение резонаторных камер,

ЗС и волноводов, в которых производится воздействие СВЧ колебаний на

вещество, становится нецелесообразным из-за их малых поперечных размеров.

Более эффективно осуществить направленное излучение СВЧ энергии и при этом

получить равномерное по интенсивности поле излучения на заданной площади и

близкое к нулю поле вне этой площади.

Равномерное излучение на прямоугольном участке поля создает

пирамидальный рупор, подключенный к прямоугольному волноводу с волной H10.

Однако постоянство плоскости поляризации напряженности электрического поля

E в этом случае допустимо не для всех применений. Например, наиболее

эффективно воздействуют миллиметровые волны на бактерии тогда, когда вектор

E параллелен большему размеру бактерии. А так как бактерии ориентированы в

облучаемом пространстве хаотически, то для повышения эффективности

облучения желательно иметь равномерное по мощности распределение поля на

площади, ограниченной кругом, и в пределе этой площади иметь круговую

поляризацию вектора E.

Подобного типа облучатель для рабочей длины волны 7,1±0,2 мм

изображен на рис.15. Он состоит из перехода со стандартного прямоугольного

волновода сечением 2,6x5,2 мм на круглый волновод диаметром 6,2 мм. В этом

переходе волна H10, распространяющаяся в прямоугольном волноводе, плавно и

без отображений преобразуется в волну H11 круглого волновода с сохранением

плоскости поляризации вектора E. Для получения круговой поляризации вектора

напряженности электрического поля в круглом волноводе используется секция

круглого волновода, в которую помещена четвертьволновая полистироловая

пластина (e=2,56) толщиной 1,1 мм и длиной 10 мм с плавным сужением на

концах для предотвращения отражений, плоскость которой расположена под

углом 45° к направлению вектора E в прямоугольном волноводе. Далее круглый

волновод диаметром 6,2 мм переходит в излучающий рупор с углом раскрыва 36°

и диаметром раскрыва 150 мм. Применялись также рупоры с раскрывами 50 и 300

мм. Для формирования равномерного поля облучения в раскрыве рупора помещена

диэлектрическая линза из фторопласта (e=2,08), имеющая специально

рассчитанный профиль по стороне, обращенной к волноводу, и плоскую

поверхность на стороне объекта облучения.

Идеальную равномерность поля в пределах радиуса R получить

невозможно. Равномерность считается достаточной, если перепады

интенсивности поля в пределах круга радиуса R не превышают 3 дБ.

Наилучшая равномерность напряженности поля получилась при раскрыве

рупора 150 мм. Размер равномерно облучаемой поверхности при этом можно

регулировать изменением расстояния L. При Lі400 мм равномерность поля по

сечению луча уже практически не меняется. Таким образом, увеличивая L,

можно получить увеличение диаметра 2R равномерно облученной поверхности.

[pic]

Рис. 15. Облучатель с круговой поляризацией вектора напряженности

электрического поля:

1 — переход с прямоугольного волновода с сечением 2,6x5,2 мм на круглый

волновод диаметром 6,2 мм; 2 — фазосдвигающая диэлектрическая пластина; 3 —

рупор с раскрывом 150 мм; 4 — линза из фторопласта; 5 — прижимное кольцо.

Применение рассмотренной квазиоптической системы формирования пучка

электромагнитных волн позволило передавать на облучаемую поверхность 80%

энергии, излучаемой рупором при допустимом изменении интенсивности

напряженности электрического поля на 3 дБ от максимального значения. Без

применения описанной системы формирования на равномерно облучаемую

поверхность приходится только 55% излученной рупором энергии поля волны

H11. Применение линзы эквивалентно увеличению площади облучаемой

поверхности примерно в 1,5 раза.

Таким образом, рассмотренный тип облучателя позволяет получить

равномерную с точностью до 3 дБ облучаемую поверхность на длине волны 7,1

мм диаметром от 50 до 300 мм. Диаметр облучаемой поверхности определяется

расстоянием от рупорно-линзевой антенны до объекта облучения.

Сублимационная сушка

Одним из сравнительно новых способов консервации продуктов

обеспечивающих максимальное сохранение вкусовых свойств и качеств свежих

продуктов, является сублимационная сушка. При такой сушке хорошо

сохраняются витамины, белки и ароматические вещества, продукты имеют малую

массу и в герметичной упаковке, например из полиэтиленовой пленки, могут

без ухудшения качества храниться многие годы.

В технологическом процессе сублимационной сушки продукты сначала

быстро замораживают, потом помещают в вакуумную камеру, где производится

откачка давления остаточных газов до 2,7 — 8 Па. В вакууме происходит

интенсивное испарение льда. Этот процесс идет с поглощением тепла. Чтобы в

процессе испарения температура продукта не падала слишком сильно,

необходимо подводить тепло извне. Это так называемая теплота возгонки.

Сублимационную сушку можно проводить путем теплоизлучения: например,

получать тепло от специальных пластин, нагреваемых горячей жидкостью и

помещаемых в вакуумной камере вблизи лотков с замороженными продуктами.

Постепенно лед будет испаряться (практически полностью), а продукт

приобретает вид губки значительно меньшей массы. Испаряемая влага не

откачивается насосами, а конденсируется на специальных конденсационных

пластинах, охлаждаемых до температуры ниже —55°C. Эти пластины периодически

очищают от наросшего льда.

После герметизации в полиэтиленовые пакеты сублимированные продукты

можно перевозить и хранить без охлаждения.

Наиболее длительной и сложной технологической операцией при

теплоизлучении является возгонка льда, которая в начале процесса сушки

проходит при температуре поверхности продукта (— 40 ё —50)°C. В процессе

сушки граница между высушенной и замороженной частями продукта, т.е.

поверхность возгонки, постепенно перемещается вглубь, так что снаружи

образуется высушенный слой с малой теплопроводностью, который препятствует

передаче тепла к внутренним замороженным частям продукта. В результате для

сушки теплоизлучением требуется от 8 до 24 ч. Если попытаться сократить это

время, то можно перегреть наружные высушенные слои.

Сверхвысокочастотный нагрев позволяет подводить тепло равномерно по

всему объему. А это позволяет уменьшить время сушки в 10 раз и более, что

обеспечивает в конечном счете не только уменьшение стоимости сушки в 2 — 5

раз, но и улучшает качество сушеной продукции. Кроме того, появляется

возможность создания не камерных, а конвейерных установок для

сублимационной сушки. Общие капиталовложения, необходимые для сооружения

крупного цеха сублимационной сушки с СВЧ нагревом, примерно на 30% меньше,

чем при использовании нагрева за счет теплоизлучения.

Рассмотрим некоторые особенности сублимационной сушки с помощью СВЧ

нагрева на примере сушки мяса.

При равномерном выделении тепла в объеме диэлектрика с потерями,

каким в нашем случае является замороженное мясо, мощность потерь в единице

объема (в ваттах на кубический см) определяется по формуле

P = 0,287 E[pic] f e[pic] * 10[pic],

где f — частота, МГц; E — напряженность электрического поля, В/см; e[pic] —

коэффициент диэлектрических потерь в продукте.

[pic]

Рис. 16. Зависимости коэффициента потерь e[pic] и диэлектрической

постоянной e говядины от температуры:

1 — для сырого мяса; 2 — для мяса, высушенного сублимационной сушкой

(сплошная линия — на частоте 1000 МГц; пунктирная линия — на частоте 3000

МГц).

На рис. 16 показаны зависимости e[pic] и e[pic] от температуры сырого

и высушенного мяса. По этим кривым видно, что e[pic] и e[pic] существенно

уменьшаются в процессе сушки. Поэтому в первой половине технологического

процесса необходимо несколько увеличивать подводимую мощность, но не

настолько, чтобы произошло размораживание продукта или возник электрический

СВЧ дуговой разряд. При дуговом разряде бесполезно теряется СВЧ мощность и

происходит подгорание продукта. Если при атмосферном давлении пробивная

напряженность электрического поля 30000 В/см, то при давлении остаточных

газов 13,3 — 40 Па имеет место минимальная пробивная напряженность

электрического поля, равная около 100 В/см в импульсе. При рабочих же

давлениях в сушильных камерах менее 8 Па пробивная напряженность поля

превышает 170 В/см на частоте 915 МГц и превышает 400 В/см для частоты 2450

МГц.

В процессе сушки поверхностные слои при СВЧ нагреве становятся

практически сухими и обладают малой теплопроводностью, поэтому их

температура становится положительной и может достигать нескольких десятков

градусов. Максимальная температура высушенных частей не должна превышать

определенных для каждого вида продуктов значений, чтобы не произошло

ухудшение качества. Так, для говядины максимально допустимая температура

+50°C, а для свинины — +40°C. Таким образом, чтобы не произошло перегрева

наружных слоев, в конце процесса сушки надо уменьшить подводимую СВЧ

мощность.

С другой стороны, как видно из рис. 16, при температурах ниже нуля

потери (e[pic]) примерно на порядок меньше, чем при комнатной и более

высоких температурах. Это говорит о том, что только на СВЧ, учитывая

множитель f в формуле для P, можно получить достаточную для сушки и

равномерно распределенную по объему мощность путем выбора рабочей частоты в

пределах 800 — 2500 МГц. В данном случае применимы рекомендации по

конструированию камер для СВЧ нагрева, справедливые при малых потерях в

диэлектрике.

Чтобы уменьшить опасность пробоя конструкция камер должна быть

такова, чтобы электрическое поле в продукте было максимальным, а в

окружающем вакууме не превышала допустимого значения. В простейшем случае

этого можно достигнуть, помещая подвергающиеся сушке продукты между

широкими стенками прямоугольного волновода с волной H10 вблизи его

продольной оси.

Примеры применения СВЧ нагрева для приготовления пищи

В настоящее время СВЧ печи могут найти применение не только в

общественном питании (рестораны, столовые, вагоны-рестораны), но и в быту.

Приготовление мяса. Благодаря выделению тепла во всем объеме довести

до готовности мясо с СВЧ печи можно всего лишь за 1 — 5 мин (в сковородке

на это требуется 40 мин). Равномерное выделение тепла по объему каждого

куска обеспечивает в приготовленном мясе отсутствие непроваренных или

непрожаренных мест. Кроме того, при столь быстром подогреве не происходит

выпаривание соков, поэтому вкусовые качества получаются более высокими, чем

при обычных способах готовки.

Размораживание мяса, фруктов и овощей. Замороженные продукты

приобретают все большую популярность. Однако перед употреблением их

необходимо разморозить, что требует длительного времени. После медленного

размораживания их качество заметно ниже, чем у свежих продуктов. Чтобы

представить выигрыш во времени при использовании СВЧ печей для

размораживания, можно привести следующие данные по традиционным способам

размораживания. Время оттаивания куска мяса массы 1,3 кг в холодильнике

(мясо переложено из морозильной камеры в пространство с плюсовой

температурой, близкой к нулю) 24 ч; при комнатной температуре 10 — 12 ч;

при использовании вентилятора — 5 — 6 ч; в печи при 72°C или в проточной

воде в водонепроницаемой упаковке 3 — 4 ч.

С помощью СВЧ нагрева разморозить фрукты и овощи можно за 1 — 3 мин.

Это дает не только экономию времени, но и настолько увеличивает качество

размороженных овощей и фруктов, что они почти не отличаются от свежих.

Глубина проникания СВЧ поля в замороженное мясо увеличивается с 2,85

см при —1,1°C до 68,7 см при —51°C на частоте 1000 МГц и с 1,5 см при 1,1°C

до 42,3 см при —51°C на частоте 3000 МГц. Хотя разница здесь не столь

велика, все же считается, что более глубокий прогрев удается обеспечить на

более низких частотах, т.е. при рабочей частоте вблизи 1000 МГц, особенно

если размеры обрабатываемого продукта превышают 5 см по толщине.

Торговые автоматы. Широкое распространение в торговле получили

автоматы для продажи, например, газированной воды и газет, находят

применение на почтах и в гостиницах автоматы по продаже конвертов и

открыток и т.д.

Одной из главных целей применения автоматики в торговле является

возможность покупки товаров в любое время суток. Для непортящихся товаров,

таких, как газированная вода, сигареты, газеты и пр., эта задача технически

решена. Иное дело — автоматы для продажи скоропортящихся продуктов и тем

более таких, которые желательно принимать в пищу в горячем виде. С

применением СВЧ появилась возможность для проектирования и изготовления

подобных автоматов. Потребности в таких автоматах, безусловно, есть:

например, на вокзале можно было бы в любое время через несколько минут

получить стакан горячего молока, кусок горячей отварной или жареной курицы.

Принцип торгового автомата для продажи холодный и нескоропортящихся

пищевых продуктов известен и применяется в закусочных-автоматах: после

опускания жетона или монеты заранее приготовленная порция продукта подается

потребителю. При использовании СВЧ техники для создания автоматов по

продаже горячих продуктов эта обычная схема должна быть дополнена двумя

устройствами: холодильником для хранения продуктов и СВЧ печью, куда после

опускания монеты или жетона должны подаваться порции продуктов и где за 1 —

3 мин производится не только их оттаивание, но и нагрев до необходимой

температуры. Далее — обычная выдача порции потребителю. Холодильник и СВЧ

печь — это уже хорошо отработанные элементы, так что теперь дело за

конструкторами и технологами подобных автоматов.

Значительно более простыми могут быть торговые автоматы, которые

выдают замороженные порции продуктов, а покупатель перед употреблением в

пищу сам разогревает их в СВЧ печах, установленных в том же зале закусочной-

автомата.

В описанных применениях СВЧ печей реализуются преимущества

централизованного приготовления продуктов питания, при котором более

эффективно используется квалифицированный персонал, широко применяются

механизация и автоматизация трудоемких процессов.

Питание в больницах. Пищеблоки крупных больниц обычно расположены в

отдельных помещениях, и пока оттуда питание доставляется к постели

больного, пища становится если не холодной, то чуть теплой. СВЧ печи

позволяют преодолеть этот недостаток. Быстрый разогрев блюд можно вести

вблизи каждой палаты. Особенно это важно в инфекционных отделениях больниц,

где каждую порцию можно разогревать на бумажных тарелочках однократного

использования.

Весьма перспективной представляется организация питания, при которой

в больницах пища не готовится, а поступает со специализированных

предприятий на склад больницы в виде замороженных или охлажденных порций,

откуда персонал, обслуживающий больных питанием, их получает и разогревает

в СВЧ печах непосредственно перед подачей больному. Подсчитано, что при

такой организации экономится 18% средств на питание. А это означает, что на

18% можно увеличить расходы на продукты при одних и тех же ассигнованиях на

питание.

СВЧ печи в быту. В последнее время, особенно в новых жилых домах

вместо газа для приготовления пищи используется электричество. При этом

снижается загрязнение воздуха, полностью устраняется опасность взрывов, но

электрические плиты сравнительно медленно разогреваются и довольно долго

остывают после выключения.

Следующий шаг по применению электричества в быту — широкое внедрение

СВЧ печей. В последние годы ведущие фирмы США и Японии наладили массовый (с

1975 г. свыше 1 млн. шт. в год) выпуск бытовых плит, предназначенных для

квартир и коттеджей. Они представляют собой комбинацию обычной трех-

четырехкомфорочной электроплиты с СВЧ печью. СВЧ печь может быть

расположена как духовка под электроплитой или же над ней в виде шкафчика.

При широком использовании СВЧ печей в быту получает быстрое развитие

и индустрия приготовления замороженных порционных блюд, специально

предназначенных для быстрого оттаивания и разогрева в СВЧ печах. Так что в

недалеком будущем хозяйки будут покупать порционные замороженные блюда,

хранить их в морозильных камерах своих холодильниках и подавать к столу в

размороженном и разогретом в СВЧ печах виде через считанные минуты после

извлечения из холодильника.

Рецепт: фаршированная лопатка ягненка.

Из мяса лопатки ягненка, фаршированного ароматной начинкой из бекона

и грибов, легко получается несколько порций.

25 гр. сливочного масла;

1 средняя луковица, очищенная и мелко нарезанная;

100 гр. бекона с прожилками, без шкурки и мелко порубленного;

100 гр. грибов, порезанных;

100 гр. свежих хлебных крошек;

1 яйцо, взбитое;

соль и перец;

лопатка ягненка (барашка) с удаленной костью;

желе из красной смородины;

На 4 — 6 порций.

1. Растопите масло, 30 сек., добавьте лук, бекон и грибы и

готовьте до мягкости — около 3 — 5 (7) мин.

2. Высыпьте и размешайте хлебные крошки, приправы и яйцо.

3. Разложите (разверните) мясо лопатки и распределите по нему

начинку.

4. Скатайте мясо в сверток округлой формы и перетяните бечевкой.

5. Взвесьте и рассчитайте время приготовления.

6. Уложите на решетку для жарения и накройте бумажным полотенцем

или разорванным мешочком для жарения.

7. Готовьте в режиме HIGH (или на 100% P.) 1 — 2 (3) мин. на

каждые 450 гр. веса.

8. Уменьшите мощность и готовьте в режиме MEDIUM/HIGH (или на 70%

P.) половину оставшегося времени или установите заранее автоматический

режим переключения мощности со 100% на 70% через заданное время.

9. Переверните мясо, нанесите желе из красной смородины и

продолжайте готовить ненакрытым.

10. Свободно оберните фольгой и дайте отстояться из расчета 5 мин. на

каждые 450 гр. веса.

11. Используйте сок, который стек в противень под решеткой для

негустой подливы.

При готовке соблюдайте технику безопасности. Приятного аппетита!

Защита от СВЧ излучений

Во всех предыдущих параграфах были даны описания мощных СВЧ

устройств, в которых генераторы высокочастотных энергии имели мощность

около единиц киловатт в непрерывном режиме. Даже если небольшая часть этой

мощности просачивается в окружающее установку пространство, это может

представлять опасность для окружающих: воздействие достаточно мощного СВЧ

излучения на зрение, нервную систему и другие органы человека может вызвать

серьезные болезненные явления. Поэтому при работе с мощными источниками СВЧ

энергии необходимо неукоснительно соблюдать требования техники

безопасности.

В нашей стране установлена безопасная норма СВЧ излучения, т.е. так

называемая санитарная норма — 10 мкВт/см[pic]. Она означает, что в месте

нахождения обслуживающего персонала мощность потока СВЧ энергии не должна

превышать 10 мкВт на каждый квадратный сантиметр поверхности. Эта норма

взята с многократным запасом. Так, например, в США в 60-е годы была норма

в 1000 раз большая — 10 мВт/см[pic].

Следует отметить, что по мере удаления от мест излучения СВЧ мощности

— от резонаторных камер или волноведущих систем, где производится обработка

с помощью СВЧ энергии, — поток излученной энергии быстро ослабевает

(обратно пропорционально квадрату расстояния). Поэтому можно установить

безопасную границу, где уровень излучения ниже нормы, и выполнить ее в виде

ограждения, за которое нельзя заходить во время выполнения технологического

процесса. При этом защитные устройства получаются достаточно простыми и

недорогими.

В бытовых СВЧ печах для предотвращения излучения через загрузочные

люки, дверцы и крышки наиболее распространены контактные устройства в виде

множества пружинок из листового материала, например бериллиевой бронзы

БрБ2. Такие пружинки создают контакт для СВЧ токов по всему периметру

загрузочного люка. Подобная система была применена в отечественной СВЧ

печи, в ряде японских печей.

В настоящее время существует несколько видов как твердых, тик и

мягких (типа резины) поглощающих материалов, которые уже при толщине в

несколько миллиметров обеспечивают практически полное поглощение

просачивающейся СВЧ энергии.

Поглощающий материал закладывается в щели между теми металлическими

деталями резонаторных камер или волноведущих структур, которые не могут

быть соединены сваркой или пайкой.

Предотвращение излучения через отверстие для наблюдения или подачи

воздуха осуществляется применением металлических трубок достаточно малого

внутреннего диаметра и необходимой длины. Такие трубки являются

запредельными волноводами и практически не пропускают СВЧ энергию.

Необходимо, чтобы внутренний радиус R был в 10 — 15 раз меньше рабочей

длины волны. В этом случае погонное затухание (в децибелах на сантиметр) на

низшем типе волны H11 может быть приблизительно определено по формуле

L=16/R, а общее затухание при длине трубки l становится равным 16l/R дБ.

Рассмотрим численный пример. Пусть рабочая длина волны l=12,6 см.

Возьмем трубку с внутренним радиусом R=9 мм. Пользуясь формулой для L,

определим, что на каждом сантиметре длины трубки погонное затухание

L=16/0,9=17,8 дБ/см. Если мощность СВЧ колебаний резонатора составляет 1

кВт, а вне трубки будем считать допустимой мощность 1 мкВт, то на длине

трубки l должно быть ослабление 1кВт/1мкВт=1/10[pic]=10[pic] раз, или 60

дБ. Длина трубки будет l=60/L=60/17,8=3,37 см.

Окончательно длину трубки с внутренним диаметром 18 мм можно принять

равной 4 см. Как видим, безопасный уровень излучения может быть получен при

не очень длинных трубках и при достаточно больших диаметрах.

Для промышленных установок СВЧ нагрева характерна необходимость

многоразового открывания и закрывания люков загрузки, и т.д. От этих

операций защитные устройства, в особенности контактные, постепенно

изнашиваются. Кроме того, с течением времени контактные поверхности

окисляются. В результате излучение может возрасти в несколько раз и даже на

один-два порядка. Поэтому необходимы систематическое наблюдение за

состоянием защитных устройств, проведение периодических замеров уровня

излучения. Отсюда и жесткие требования к надежности защитных устройств.

Чтобы в эксплуатации нормы облучения не были превышены, заводские сдаточные

нормы на излучение делают более жесткими. Так, в Японии допускается

увеличение излучения от заводских норм до эксплуатационных при количестве

открываний более 100 тыс. раз. Собственно, при таких условиях и проводятся

периодические заводские испытания защитных устройств.

Заключение

Приведенные в этой работе описания электронных приборов СВЧ и их

применений, конечно, далеко не исчерпывает всего их многообразия.

Ограниченная тематика работы позволила рассмотреть только наиболее

распространенные и типичные явления в СВЧ электронике, в частности, в

энергетике СВЧ в народном хозяйстве.

Что касается применений, то здесь опущены такие важные и интересные

разделы как телевидение, радиолокация, радионавигация, радиорелейные линии,

передача электрической энергии из космоса на Землю и многое другое,

описанию которых посвящены другие работы, а также, впрочем, и обширная

научная и научно-популярная литература.

Насколько в недалеком будущем расширится использование СВЧ

электроники в народном хозяйстве, можно показать на таком примере.

Общепринятым считается мнение, что в современной жизни отказаться от

применения ядохимикатов в сельском хозяйстве нельзя. Однако необходимо

принимать меры по сокращению их использования. Одним из эффективных

способов в этом направлении является применение электроники СВЧ. Уже первые

опыты показали, что на участке, обработанном СВЧ излучением, урожай на 60%

выше, чем при химической обработке. Кроме того, предварительная до сева

обработка почвы СВЧ облучением задерживает появление сорняков, что тоже

способствует повышению урожайности.

Другой пример применения СВЧ электроники в сельском хозяйстве

относится уже к послеуборочным проблемам. Сушка хлопка-сырца СВЧ энергией

перед его длительным хранением резко повышает качество и уменьшает отходы.

Таким образом, можно с уверенностью утверждать, что с каждым годом

области применения электроники сверхвысоких частот будут расширяться,

обеспечивая и убыстряя развитие производительных сил и улучшая условия

труда.

Список литературы

И. В. Лебедев Техника и приборы СВЧ. Часть I. — Москва: Высшая школа,

1970.

И. В. Лебедев Техника и приборы СВЧ. Часть II. — Москва: Высшая

школа, 1972.

Т. И. Изюмова, В. Т. Свиридов Волноводы, коаксиальные и полосковые

линии. — Москва: Энергия, 1975.

Ю. Н. Пчельников, В. Т. Свиридов Электроника сверхвысоких частот. —

Москва: Радио и связь, 1981.

Е. В. Задедюрин Сборник деликатесных рецептов для СВЧ печей. — Минск:

Мет, 1993.

Содержание

Задание • • • • • • • • • • • •

• • • • • • • • • • • • • •

2 (Введение)

Введение • • • • • • • • • • • •

• • • • • • • • • • • • • •

3 Промышленные диапазоны электромагнитных колебаний • • • •

• 4

(Аналитическая часть)

Особенности нагрева диэлектриков в диапазонах УВЧ и СВЧ • • • •

4

Получение СВЧ энергии большой мощности • • • • • • •

• • • • 5

Применение последовательного электромагнита • • • • •

• • • • • 5

Уменьшение пульсаций магнитного поля • • • • • •

• • • • • • 8

Сравнение электромагнитов и постоянных магнитов • • • •

• • • • 8

Резонаторные камеры для установок СВЧ нагрева диэлектриков • • 9

Уровень загрузки резонаторных камер • • • • • •

• • • • • • • 10

Возбуждение рабочих камер • • • • • • • •

• • • • • • • • • 11

СВЧ нагрев движущихся диэлектрических лент и изделий круглого поперечного

сечения • • • • • • • • • • • •

• • • • • • • • • 11

(Расчетная часть)

Обеспечение равномерности нагрева по толщине • • • •

• • • • • 13

Плазменные СВЧ горелки (плазмотроны) и их применение • • • •

• 16

Свойства электронно-ионной плазмы • • • • • •

• • • • • • • • 16

Принцип устройства СВЧ плазмотронов • • • • • •

• • • • • • • 17

Примеры плазмотронов волноводного типа • • • • • •

• • • • • 18

СВЧ плазменный источник возбуждения спектра • • • • •

• • • • 21

Излучатели СВЧ энергии • • • • • • • • • •

• • • • • • • • • 22

Сублимационная сушка • • • • • • • • • •

• • • • • • • • • 26

(Инновационная часть)

Примеры применения СВЧ нагрева для приготовления пищи • • • •

28

Приготовление мяса • • • • • • • • •

• • • • • • • • • • • 28

Размораживание мяса, фруктов и овощей • • • • • •

• • • • • • 28

Торговые автоматы • • • • • • • • •

• • • • • • • • • • • • 29

Питание в больницах • • • • • • • • •

• • • • • • • • • • • 30

СВЧ печи в быту • • • • • • • • • •

• • • • • • • • • • • • 30

Рецепт: фаршированная лопатка ягненка • • • • • •

• • • • • • 30

Защита от СВЧ излучений • • • • • • • • •

• • • • • • • • • 31

(Заключение)

Заключение • • • • • • • • • • • •

• • • • • • • • • • • • 33

Список литературы • • • • • • • • • •

• • • • • • • • • • • 34

Страницы: 1, 2


© 2010 Реферат Live