Рефераты

Учебное пособие: Разнообразие кристаллографических форм

Учебное пособие: Разнообразие кристаллографических форм

Министерство образования Российской Федерации

ГОУ ВПО "Уральский государственный технический университет - УПИ"

КРИСТАЛЛОГРАФИЯ И МИНЕРАЛОГИЯ

Методические указания

к лабораторным работам по дисциплине -

Кристаллография и минералогия, для направления - 651300, специальности 110100- Металлургия черных металлов, специальности 110200 -металлургия цветных металлов; направления 654900 -Химическая технология неорганических веществ и минералов, специальности 250200 - Химическая технология тугоплавких неметаллических и силикатных материалов; направление564000 - Оптотехника, специальности 191100 - Оптические технологии и материалы; направление654700 - Информационные системы, специальности 071900 - Информационные системы в технике и технологиях (материаловедение); направление 52 , специальности 250900 - Химическая технология материалов современной энергетики. Для студентов всех форм обучения

(часть 1)

Екатеринбург 2004


УДК

Составители В.Н. Логинов, О.И. Корженко

Научный редактор профессор Ф.Л. Капустин

Кристаллография и минералогия:

Методические указания к лабораторным работам по дисциплине "Кристаллография и минералогия".

В.Н. Логинов, О.И. Корженко

Екатеринбург; ГОУ ВПО УГТУ-УПИ, 2004.

Пособие предназначено для изучения кристаллографии, минералогии и имеет своей целью закрепить теоретические положения, данные в лекциях, познакомить студентов с разнообразием кристаллографических форм, научить индицировать грани, ребра и простые формы кристалла, графически изображать кристалл в виде рисунка и на плоскости - в виде стереографической проекции.

Пособие может быть использовано для проведения лабораторных и практических работ по кристаллографии и минералогии.

Библиограф.: 5 назв. Рис. 4. Табл. 5. Прил. 6.

Подготовлено кафедрой материаловедение в строительстве.

© ГОУ ВПО "Уральский государственный

технический университет - УПИ", 2004.


1. Геометрическая кристаллография

Введение

Лабораторная работа "Описание моделей кристалла" дает возможность студенту на примере деревянных моделей конечных многогранников ознакомиться с симметрией кристаллов, тридцатью двумя видами симметрии, сгруппированными в 7 сингоний и 3 категории, правилами выбора системы кристаллографических координат, способом графического изображения кристаллов при помощи стереографической проекции, методом расчета символов граней и простых форм.

Кристаллическое состояние - наиболее распространенное состояние вещества на Земле и в Космосе. Кристаллическим называется такое состояние вещества, в строении которого наблюдается закономерное расположение частиц - молекул, атомов, ионов, образующих ряды, плоские сетки, пространственную решетку. В веществе, находящемся в аморфном состоянии закономерного расположения частиц в полной мере не обнаруживается. Другими словами, в строении вещества, находящегося в кристаллическом состоянии обнаруживается ближний и дальний порядок. Вещество в аморфном состоянии имеет в строении только ближний порядок и не имеет дальнего порядка.

Кристаллическое строение имеют горные породы, минералы, технические камни (цемент, огнеупоры, металлы). В аморфном состоянии находятся стекла: природные (обсидиан) и технические - смолы, гудрон, парафин, воск, стекло.

Кристалл - это физическое тело, частицы которого образуют кристаллическую решетку, имеют определенную геометрическую форму. В идеальном случае - вершина кристалла соответствует атому, молекуле, иону; ребро - ряду атомов, молекул, ионов; грань - плоской сетке. В реальных кристаллах при большом увеличении можно увидеть, что вершина состоит из многих частиц, ребро - из многих рядов, грань - из многих плоских сеток, расположенных параллельно.

Макроскопически заметные параллельные грани называются вациналями.

1.1  Элементы симметрии

 

Закономерное расположение частиц обуславливает внутреннюю и внешнюю симметрию. Симметрия - в переводе означает соразмерность. Симметричной фигурой - кристаллом - называется совокупность закономерно повторяющихся физически и геометрически равных частей. Вспомогательные геометрические образы - точки, прямые, плоскости, позволяющие установить симметрию кристалла, называются элементами симметрии.

Плоскостью симметрии называется такая плоскость, которая делит фигуру на две зеркально совместимые части. Для конечных многогранников плоскость симметрии обозначается латинской буквой P - начальной от слова "plane". Для бесконечных структур по международной номенклатуре этот элемент обозначается буквой "m" - начальной буквой слова "miror" - зеркало.

Центром инверсии называется такая точка внутри фигуры, которая делит отрезки, соединяющие соответственные точки фигуры, пополам. Для конечных многогранников центр инверсии обозначается буквой "C", для бесконечных структур "".

Осью симметрии называется такая ось, при повороте вокруг которой на определенный угол фигура совмещается сама с собой. Наименьший угол поворота, при котором достигается совмещение, называется элементарным углом - α. Количество совмещений при повороте на 360º называется порядком оси и обозначается значком "n". Порядок оси и элементарный угол связаны соотношением - n = . Ось симметрии обозначается буквой Ln, где значок справа внизу обозначает порядок оси:

L1 - ось первого порядка с элементарным углом 360º. Таким элементом симметрии обладают самые бесформенные тела - они совмещаются при полном повороте на 360º. Это своеобразный "0" в кристаллографии - отсутствие симметрии;

L2 - ось второго порядка - совмещение достигается при повороте на 180º;

L3 - ось третьего порядка - совмещение достигается при повороте на 120º;

L4 - ось четвертого порядка - совмещение достигается при повороте на 90º;

L6 -ось шестого порядка - совмещение достигается при повороте через 60º.

Осей пятого порядка и выше шестого в кристаллах не существует, из-за их решетчатого строения.

Инверсионной осью симметрии называется такой элемент, действие которого складывается из действия простой оси и центра инверсии, участвующих совместно. Оси симметрии обозначаются также буквой L со значком "in":

Li1 - инверсионная ось первого порядка по определению складывается из L1+C, то есть просто С. По международной номенклатуре обозначается "T";

Li2 - инверсионная ось второго порядка складывается из L2+С, нетрудно убедиться, что эти два элемента можно заменить плоскостью симметрии (Р), перпендикулярной этому направлению;

Li3 - инверсионная ось третьего порядка слагается из L3+С, но они всегда встречаются вместе и проще выявлять L3 и С;

Li4 и Li6 - соответственно инверсионные оси четвертого и шестого порядка.


1.2 Виды, сингонии, категории

Каждый многогранник обладает определенной симметрией. Совокупность элементов симметрии, свойственная многограннику, называется видом симметрии. Всего выведено 32 вида симметрии. Логичный вывод всех видов симметрии был сделан русским ученым А.В.Гадолиным в 1869 году.

Виды симметрии сгруппированы в сингонии - группы с общими чертами структуры.

В триклинную сингонию объединены два вида симметрии с осями первого порядка -L1 и Li1, то есть - С.

В моноклинную сингонию объединяются виды симметрии с одной осью симметрии второго порядка - простой или инверсионной.

В ромбическую сингонию объединяются виды симметрии с несколькими осями второго порядка - простыми или инверсионными.

Внешняя симметрия кристаллов триклинной, моноклинной, ромбической сингоний, объединяемых в низшую категорию, связана с их структурой.

В тригональную сингонию объединяются виды симметрии, имеющие одну ось третьего порядка, в тетрагональную - одну ось четвертого порядка, в гексагональную - одну ось шестого порядка. Эти три сингонии, характеризующиеся наличием одной оси высшего порядка, объединяются в среднюю категорию.

В высшую категорию включается кубическая сингония, характеризующаяся наличием нескольких осей 3-го и 4-го порядка. Осей шестого порядка в кубической сингонии нет.


1.3 Простые формы кристаллов

 

Названия геометрических фигур в кристаллографии несколько отличаются от фигур в геометрии. Это связано с тем, что в кристаллографии учитывается структура вещества кристалла.

Простой формой кристалла называется совокупность граней, связанных элементами симметрии. Различается несколько типов простых форм (табл.1):

·  Открытые формы - такие формы, грани которых не полностью ограничивают пространство. Примерами таких форм являются: моноэдр, диэдр, пинакоид, призмы и пирамиды.

·  Замкнутые формы - такие формы, грани которых полностью ограничивают пространство. Примерами таких форм являются:

. дипирамиды, трапецоэдры, скаленоэдры, тетраэдры, все простые

формы кубической сингонии.

·  Конгруэнтные формы - это совместимые формы. Примеры: гексаэдр, октаэдр, призмы, пирамиды.

·  Энантиоморфные формы - зеркально совместимые формы правые и левые. Примеры: ромбический тетраэдр, трапецоэдры, пентагонтриоктаэдр, тетрагонтриоктаэдр.

·  Постоянными формами - называются такие формы, грани котороых образуют постоянные углы и постоянные символы. Пример: гексаэдр, октаэдр, кубический тетраэдр.

·  Переменными формами - называются формы, грани которых образуют переменные углы и переменные символы. Примерами могут быть пирамиды, дипирамиды, ромбоэдр, тетраэдр.


1.3.1 Простые формы низшей категории

Таблица 1

Определение простых форм низшей категории

п/п

Кол-во

граней

Взаимное расположение граней

Названия простых форм

1

2

3

4

5

6

7

1

2

2

4

4

4

8

 -

Параллельны

Пересекаются

Пересекаются в параллельных ребрах, в сечении ромб

Пересекаются в одной точке,

в сечении ромб

Пересекаются в 4-х точках по три,

грань- косоугольный треугольник

Пересекаются в 2-х точках с

общим ромбическим сечением

моноэдр

пинакоид

диэдр

призма ромбическая

пирамида ромбическая

тетраэдр ромбический

дипирамида ромбическая

В низшей категории насчитывается 7 простых форм - из них 5 открытых и 2 замкнутые - тетраэдр и дипирамида ромбическая (табл.1, рис.1).


Рис.1 Простые формы кристаллов низшей категории:

1 - моноэдр; 2 - пинакоид; 3 - диэдр; 4 - ромбическая призма;

5 - ромбический тетраэдр; 6 - ромбическая пирамида; 7 - ромбическая

дипирамида

1.3.2 Простые формы средней категории

Из низшей категории в среднюю категорию переходят две простые формы: моноэдр и пинакоид. Они переходят как частные формы, т.е. перпендикулярные главной оси. Другие формы - 6 призм, 6 пирамид, 6 дипирамид, 3 трапецоэдра, 2 скаленоэдра, тетраэдр, ромбоэдр. Своих форм в средней категории - 25, и две переходящие из низшей категории (табл. 2, рис.2).

К открытым формам относятся призмы и пирамиды. чтобы образовать из них замкнутые многогранники, требуется моноэдр или пинакоид.

Остальные формы - трапецоэдры, скаленоэдры, тетраэдр и ромбоэдр - являются замкнутыми и переменными.

Таблица 2

Определение простых форм средней категории

Пересечение

с главной

осью

Расположение граней

относительно главной

оси

 Названия простых

форм

Кол-во

граней

не пересекают

главную ось

Параллельные

главной оси

Подпись:  призмытригональная

тетрагональная

гексагональная

дитригональная

дитетрагональная

дигексагональная

3

4

6

6

8

12

пересекают

главную ось

Пересекают

главную ось


Пересекают главную

ось в одной точке

моноэдр

пинакоид


Подпись:  пирамидытригональная

тетрагональная

гексагональная

дитригональная

дитетрагональная

дигексагональная

1

2


3

4

6

6

8

12

пересекают главную ось в 2-х точках

А. Нижние грани

точно под верхними


Б. Нижние грани

несимметричны

верхним


В. Нижняя грань

симметрична двум верхним


Г. Нижняя пара граней

симметрична двум парам верхних

Подпись: дипирамиды

тригональная

тетрагональная

гексагональная

дитригональная

дитетрагональная

дигексагональная

Подпись: трапецоэдры


тригональный 

тетрагональный

гексагональный

тетраэдр

ромбоэдр

Подпись: скаленоэдры


тетрагональный

дитригональный

6

8

12

12

16

24

6

8

12

4

6

8

12


Рис. 2. Простые формы кристаллов средней категории:

1–6 пирамиды: 1–тригональная, 2–дитригональная, 3–тетрагональная,

4–дитетрагональная, 5–гексагональная, 6–дигексагональная;

7–12 дипирамиды: 7–тригональная, 8–дитригональная, 9–тетрагональная, 10–дитетрагональная, 11–гексагональная, 12–дигексагональная;

13–25 призмы; 13–тригональная, 14–дитригональная, 15–тетрагональная, 16–дитетрагональная, 17–гексагональная, 18–дигексагональная, 19–тригональный трапецоэдр, 20–тетраэдр, 21–тетрагональный трапецоэдр, 22–ромбоэдр, 23–гексагональный трапецоэдр, 24–тетрагональный скаленоэдр, 25–тригональный скаленоэдр


1.3.3 Простые формы высшей категории

В высшей категории - кубической сингонии насчитывается 15 простых форм (табл.3, рис. 3). Ни одна простая форма из низшей и средней категорий не переходит в высшую. Некоторое исключение составляет тетраэдр. В низшей категории его грани косоугольные треугольники, в средней категории - равнобедренные треугольники, в высшей категории - равносторонние треугольники.

Таблица 3

Определение простых форм высшей категории

п/п

 Названия простых форм

 Кол-во

граней

 Форма граней

1

2

3.

4

5

6

7

8

9

10

11

12

13

14

15

Тетраэдр

Тригонтритетраэдр

Тетрагонтритетраэдр

Пентагонтритетраэдр

Тригонгексатетраэдр

Гексаэдр

Тригонтетрагексаэдр

Октаэдр

Тригонтриоктаэдр

Тетрагонтриоктаэдр

Пентагонтриоктаэдр

Тригонгексаоктаэдр

Ромбододекаэдр

Пентагондодекаэдр

Дидодекаэдр

4

12

12

12

24

6


24

8

24

24

24

48

12

12

24


Примечание. Все формы замкнутые. Постоянные формы подчеркнуты, остальные переменные.

Рис.3 Простые формы кристаллов высшей категории:

1–тетраэдр; 2–тригонтритетраэдр; 3–тетрагонтритетраэдр; 4–пентагонтритетраэдр; 5–гексатетраэдр; 6–октаэдр; 7–тригонтриоктаэдр; 8–тетрагонтриоктаэдр; 9–пентагонтриоктаэдр; 10–гексагонтриоктаэдр; 11–гексаэдр; 12–тригонтетрагексаэдр; 13–ромбододекаэдр; 14–пентагондодека- эдр; 15–дидодекаэдр


Комбинационной формой - называется такая, которая состоит из 2-х и более простых форм. Действительно, одной плоскостью не ограничить многогранник, двумя и тремя также. Лишь четырьмя плоскостями можно ограничить пространство и получить четырехгранник - тетраэдр. Открытые формы - призмы и пирамиды - также нуждаются в дополнительных плоскостях, чтобы получился многогранник. В замкнутых формах нет такой необходимости.

1.4  Установка кристаллов

 

Установка кристалла - это выбор координатных или кристаллографических осей. В отличие от кристаллофизической системы координат, которая является прямоугольной, кристаллографическая система подчинена внутренней структуре кристалла. Поэтому, в общем виде, она является косоугольной, а в тригональной и гексагональной сингонии принята даже четырехосная система (табл. 4).

При установке кристаллов следует руководствоваться следующими условиями:

·  координатные оси можно совмещать с осями симметрии L2, L3, L4, L6, Li4, Li6;

·  координатные оси можно совмещать, когда нет или мало осей симметрии, с нормалями к плоскостям симметрии;

·  координатные оси при отсутствии элементов симметрии или их недостаточном количестве, а это характерно для триклинной и моноклинной сингонии, можно совмещать с осями наиболее развитых зон или, что то же самое, параллельно ребрам кристаллов.

При установке кристаллов в низшей категории удлинение кристаллов необходимо направлять по III кристаллографической оси.

В ТРИКЛИННОЙ СИНГОНИИ координатные оси совмещаются с осями наиболее развитых зон.

В МОНОКЛИННОЙ СИНГОНИИ единственный элемент симметрии совмещается со второй кристаллографической осью, остальные - по осям наиболее развитых зон. Ось III ориентируется по удлинению кристалла и по оси развитой зоны.

В РОМБИЧЕСКОЙ СИНГОНИИ элементов симметрии достаточно, оси или нормали к плоскостям совмещаются с координатными осями. Система координат прямоугольная.

В ТЕТРАГОНАЛЬНОЙ СИНГОНИИ - ось 4-го порядка совмещается с III кристаллографической осью, а первые две с осями 2-го порядка либо выходящими на ребрах, либо на гранях под углом 90º друг к другу. Система координат прямоугольная. Возможны два рода установки:

1-го рода - координатные оси совмещаются с осями симметрии, выходящими на ребрах;

2-го рода - координатные оси совмещаются с осями симметрии, выходящими из середины граней.

В ТРИГОНАЛЬНОЙ и ГЕКСАГОНАЛЬНОЙ СИНГОНИЯХ установка производится по 4-м осям, причем IV ось совмещается с осью 3го или 6-го порядка, а первые три с осями 2-го порядка через 120º друг к другу. Здесь также возможны два рода установки:

1-го рода, когда за I, II, III оси выбираются оси, выходящие на ребрах;

2-го рода, когда оси, выходящие на серединах граней, принимаются за I, II,III оси.

В КУБИЧЕСКОЙ СИНГОНИИ для кристаллов кубического облика установка производится по осям 4-го порядка, для кристаллов тетраэдрического облика по осям Li4 или, что то же самое, L2, в кристаллах пентагондодекаэдрического облика - по осям 2-го порядка. Система координат прямоугольная.


Таблица 4

Схемы установки кристаллов в различных сингониях

    Сингония

             Кристаллографические

                              оси

             Единичная грань

Константы

  кристалли-

  ческих   

  решеток

1 2 3 4

                       Триклинная

Оси параллельны действительным или возможным ребрам кристалла,

Z - параллельна оси наиболее развитого пояса.                              III

                         С

                III

                                                           II

                                    

                              II

           β                                I

                    γ               

I              

        α = β = γ = 90˚

Отсекает на осях неравные отрезки

                            III


                              c0

                                 в0                 II

                         a0


              I            а0 = в0 = с0

                          

                     α β, γ;        a : 1 : с

                 Моноклинная

У - совмещается с L2 или  к Р.

Х и Z в плоскости   У,парал-лельно ребрам кристалла.    III

Z - вертикальна

               III        L2PC

                

                                                      II                            

                    α  90˚

          β                   II

                γ  90˚               I

   I                          β =α = γ = 90˚

Отсекает на осях неравные отрезки

                            III


                              с0

                                    в0                  II

                         а0

                           а0 = в0 = с0

           I       

                      

                  β;       a : 1 : с

                Ромбическая

Оси совмещаются с единичными

направлениями - с L2 или с L2 и перпендикуляром к 2Р           III

                        3L23PC

                III

                           II           

                                                         II          

           90˚    α  90˚

         β                     II         I

 γ  90˚

                               α = β = γ =90˚

  Отсекает на осях неравные отрезки.                             

   

                           III

                              с0

                         а0       в0

                                  

            I                                    II

                        а0 = в0 = с0

 

а : 1 : с

Тетрагональная

Z - вертикальна и совмещается с

      L4 или Li4. X и У    Z или по

 двойным осям,

или их   к плоскостям симметрии, ‌‌ребрам                    I


             III

Страницы: 1, 2, 3


© 2010 Реферат Live