Рефераты

Курсовая работа: Релейная защита и расчет токов короткого замыкания

 А. (6.4)

На стороне ВН принимаем к установке трансформатор тока типа ТФЗМ-220Б-I-200-0,5/10Р/10Р/10Р:  А,  А.

Коэффициент трансформации трансформатора тока

. (6.5)

На стороне НН принимаем к установке трансформатор тока типа и ТШЛ-10-3000-0,5/10Р:  А,  А.

Коэффициент трансформации трансформатора тока

. (6.6)

Силовой трансформатор Т1 имеет схему соединения обмоток Ун/Д/Д, следовательно, для компенсации сдвига фаз трансформаторы тока на высокой стороне включаются по схеме полного треугольника (), а трансформаторы тока на низкой стороне — по схеме неполной звезды ().

Вторичные токи трансформаторов тока в номинальном режиме работы:


 А; (6.7)

 А. (6.8)

За основную сторону принимаем сторону НН, так как .

4) Определяем токи небаланса, вызванные погрешностями трансформаторов тока  и регулированием напряжения под нагрузкой (РПН) . При этом все токи приводим к ступени напряжения основной стороны.

Определим ток небаланса :

, (6.9)

где  – коэффициент однотипности трансформаторов тока;

 – коэффициент апериодической составляющей для дифференциального реле;

 – допустимая погрешность трансформаторов тока;

– максимальный сквозной ток, приведенный на высокую сторону, А.

 А.

Определим ток небаланса :


, (6.10)

где  — пределы регулирования напряжения на стороне ВН;

 — пределы регулирования напряжения на стороне СН.

 А.

Предварительное значение тока срабатывания защиты по условию отстройки от токов небаланса

, (6.11)

где  – коэффициент отстройки.

 А.

Ток срабатывания защиты по условию отстройки от броска тока намагничивания

, (6.12)

где  – коэффициент отстройки.

 А.

Из двух токов срабатывания выбираем наибольший, то есть  А.

5) Предварительное значение коэффициента чувствительности защиты определяем по току двухфазного короткого замыкания на секции ГIс, приведенному на сторону ВН.

. (6.13)

6) Ток срабатывания реле на основной стороне

 А. (6.14)

Ток срабатывания реле на неосновной стороне

 А, (6.15)

где  – коэффициент трансформации силового трансформатора.

7) Примем число витков основной обмотки .

Расчетная МДС основной обмотки

 А·витков. (6.16)

Принимаем ближайшее стандартное значение МДС  .

Расчетное число витков неосновной обмотки находится из условия


. (6.17)

Принимаем .

Составляющая тока небаланса  из-за неравенства расчетного и действительного числа витков

 А. (6.18)

8) Ток срабатывания защиты с учетом всех составляющих тока небаланса

 А, (6.19)

здесь  – коэффициент отстройки.

9) Коэффициент чувствительности определяем по току двухфазного короткого замыкания на секции ГIс, приведенному на сторону ВН:

.

Так как коэффициент чувствительности превышает требуемое нормированное значение, то защита удовлетворяет требованиям чувствительности.

10) Ток срабатывания реле на основной стороне


 А.

Ток срабатывания реле на неосновной стороне

 А.

6.2 МТЗ с выдержкой времени

1) Защита выполняется с помощью токового реле РСТ 13 с коэффициентом возврата .

2) Реле включаются во вторичные обмотки уже выбранных трансформаторов тока со стороны питания, то есть схема включения трансформаторов тока и реле – полный треугольник (коэффициент схемы ), коэффициент трансформации трансформаторов тока .

3) Ток срабатывания защиты:

, (6.20)

здесь  – коэффициент отстройки;

 – максимальный рабочий ток на стороне ВН трансформатора при перегрузке, А.

А.


4) Коэффициент чувствительности в основной зоне определяется по току двухфазного короткого замыкания за трансформатором, приведенным на первичную сторону:

. (6.21)

В зоне резервирования коэффициент чувствительности определяется по току двухфазного короткого замыкания в конце кабельной линии Л5, приведенным на первичную сторону:

. (6.22)

Защита удовлетворяет требованиям чувствительности.

5) Определим ток срабатывания реле:

 А. (6.23)

Принимаем к установке реле РСТ 13-24, у которого ток срабатывания находится в пределах .

Определим сумму уставок:

. (6.24)

Принимаем сумму уставок .

Найдем ток уставки реле:

 А.

6) Время срабатывания защиты принимается по условию отстройки от времени срабатывания МТЗ на секционном выключателе Q20. Поскольку это время равно  с, то  с, где  с – ступень селективности для статического реле. Используем реле времени РВ-01.

6.3 Защита от перегруза

1) Защита выполняется с помощью токового реле РСТ 13 с коэффициентом возврата .

2) Защита выполняется с помощью одного реле, включенного во вторичную обмотку того же трансформатора тока, что и реле максимальной токовой защиты, на ток фазы А, с действием на сигнал. Коэффициент трансформации трансформатора тока , коэффициент схемы .

3) Ток срабатывания защиты определяется из условия отстройки от номинального тока трансформатора на стороне ВН:

, (6.25)

здесь  – коэффициент отстройки.

4) Коэффициент чувствительности не рассчитывается.

5) Ток срабатывания реле:

 А. (6.26)


Принимаем к установке реле РСТ 13-19, у которого ток срабатывания находится в пределах .

Определим сумму уставок:

. (6.24)

Принимаем сумму уставок .

Найдем ток уставки реле:

 А.

6) Выдержка времени защиты отстраивается от кратковременных перегрузок. Примем  с. Устанавливаем реле времени РВ-01.

6.4 Газовая защита

Газовая защита является основной защитой трансформаторов от витковых замыканий и других внутренних повреждений, сопровождаемых разложением масла и выделением газа. В качестве реагирующего органа выбираем реле типа РГТ-80. Верхняя пара контактов действует на сигнал при слабом газовыделении и понижении уровня масла, нижняя пара контактов действует на отключение при бурном газообразовании и дальнейшем понижении уровня масла. Уставка скоростного элемента (нижнего) выбирается в зависимости от мощности и системы охлаждения силового трансформатора. Так как трансформатор имеет мощность 25 МВ·А и систему охлаждения Д, то принимаем уставку 1 м/с.


7. Расчёт защиты воздушной линии Л2

Примем к установке следующие защиты:

1) основная от всех видов коротких замыканий – высокочастотная дифференциально–фазная защита;

2) дополнительная от междуфазных коротких замыканий –максимальная токовая защита;

3) защита от однофазных коротких замыканий на землю.

7.1 Высокочастотная дифференциально–фазная защита

1) Защита выполняется с помощью реле ДФЗ 2.

2) Максимальный рабочий ток линии:

 А; (7.1)

В формуле (8.1):

 – номинальная мощность передаваемая по линии Л4, ВА;

 – напряжение линии Л4, В.

Принимаем к установке трансформатор тока типа ТФЗМ220-300-0,5/10Р/ 10Р/10Р  А,  А.

Коэффициент трансформации трансформатора тока

. (7.2)

В каждой цепи линии устанавливаются три трансформатора тока, включенные по схеме полной звезды, коэффициент схемы .

3) Ток срабатывания РТ1

  (7.3)

где:  - коэффициент возврата реле.

4) Ток срабатывания РТ2

  (7.4)

5) Ток срабатывания ПР1

Определяем ток небаланса, вызванный погрешностями трансформаторов тока .

,  (7.5)

где:  – коэффициент однотипности трансформаторов тока;

 – коэффициент апериодической составляющей;

 – допустимая погрешность трансформаторов тока;

 А.

, (7.6)

где:  – коэффициент отстройки.

6) Ток срабатывания ПР2


А  (7.7)

7) Коэффициент чувствительности определяем по току двухфазного короткого замыкания на секции АIс:

.

Так как коэффициент чувствительности превышает требуемое нормированное значение, то защита удовлетворяет требованиям чувствительности.

Так же в дополнение к комплекту защит РТ1 и РТ2, которые отвечают за отключение токов 3х фазных коротких замыканий, следует установить комплект защит РТ3 и РТ4, которые отвечает за отключение несимметричных коротких замыканий. Выполнить расчет комплектов защит РТ3 и РТ4 не представляется возможным из-за недостатка данных.

7.2 Максимальная токовая защита от междуфазных коротких замыканий.

1) Защита выполняется с помощью токового реле РСТ 11 с коэффициентом возврата .

2) Измерительными органами являются выбранные в п.7.1 трансформаторы тока, включенные по схеме полной звезды (, ), а также трансформатор напряжения.

3) Ток срабатывания защиты отстраивается от максимального рабочего тока линии:


 А. (7.8)

4) Коэффициент чувствительности в основной зоне действия:

. (7.9)

Защита удовлетворяет требованиям чувствительности.

5) Ток срабатывания реле:

 А. (7.10)

Принимаем к установке реле РСТ 11-19, у которого ток срабатывания находится в пределах .

Определим сумму уставок:

. (7.11)

Принимаем уставку:

.

Найдем ток уставки реле:

 А.

Выдержка времени МТЗ:

Ступень селективности для статического реле  с.

Определим время выдержки выключателя Q5:

 с.

Для обеспечения выдержки времени выбираем реле времени РВ-01.

7.3 Защита от однофазных коротких замыканий на землю

При однофазных коротких замыканиях на землю (ОКЗЗ) увеличиваются токи нулевой последовательности, поэтому для определения данного вида повреждений устанавливаются фильтры нулевой последовательности (трансформаторы тока включаются по схеме полной звезды, а реле устанавливаются в нулевой провод). Защита от ОКЗЗ выполняется, как правило, трёхступенчатой: 1-ая ступень — направленная отсечка мгновенного действия нулевой последовательности, но в отличие от токовой отсечки отстройка производится только от тока нулевой последовательности, направленного от шин подстанции. Ток срабатывания мгновенных отсечек на параллельных линиях необходимо выбирать с учетом наличия значительной взаимоиндукции от параллельной цепи, оказывающей существенное влияние на сопротивление нулевой последовательности; 2-ая ступень — токовая отсечка нулевой последовательности с выдержкой времени  с; 3-я ступень — МТЗ нулевой последовательности.


8. Проверка трансформатора тока и выбор контрольного кабеля

Необходимо определить сечение контрольного кабеля во вторичных цепях трансформатора тока, установленного около выключателя Q17. При расчете двигателя был выбран тип трансформатора тока: ТЛМ-10-1500-0,5/10Р. Номинальный первичный ток  А, вторичный  А. Коэффициент трансформации трансформатора тока: .

Расчетная кратность тока

,  (8.2)

где  – ток при внешнем к.з. в максимальном режиме;

 – номинальный ток первичной обмотки трансформатора тока, А.

.

По кривым  для данного типа трансформатора тока находим  Ом.

Расчетное сопротивление нагрузки определяется выражением

,  (8.3)

где  – сопротивление проводов, Ом;

 Ом – сопротивление реле;

 Ом – сопротивление контактов.

Найдем  при условии :

 Ом.

Вторичные цепи выполнены медным кабелем длиной  м. Сечение кабеля можно определить по формуле:

,  (8.4)

где  – удельное сопротивление меди.

 мм2.

Принимаем стандартное сечение 2,5 мм2, которое удовлетворяет требованиям механической прочности для соединительных проводов токовых цепей. Кабель контрольный типа КВВГ.

Схема защиты двигателя 10кВ


Обозначение Наименование Кол-во Примечание
KV РСН 1
KA1 РСТ – 13 1
KA2 РСТ – 13 1
KA3 РСТ – 13 1
КА4 РСТ – 13 1
KL РП – 214 1
KH РУ – 21 1
KT РВ - 01 1

Схема защиты трансформатора Т1


Обозначение Наименование Количество Примечание
KA1 РСТ 13/19 1
KA2 РСТ 13/19 1
KA3 РСТ 13/19 1
TL1
TL2
KA4 РСТ15 1
KA5 РСТ15 1
TL3 1
TL4 1
KSG РГ43-66 1
KL1 РП321 1
KL2 РП321 1
KT1 РВМ 1
KT2 РВМ 1
KH1 РУ-21 1
KH2 РУ-21 1
KH3 РУ-21 1

Литература

1 Релейная защита в системах электроснабжения: Методические указания к изучению курса и выполнению контрольного задания / Г. А. Комиссаров, Х. К. Харасов. – Челябинск: ЧГТУ, 1996. – 56 с.

2 Неклепаев Б. Н., Крючков И. П. Электрическая часть электростанций и подстанций: Справочные материалы для курсового и дипломного проектирования: Учеб. пособие для вузов. – 4-е изд., перераб. и доп. - М.: Энергоатомиздат, 1989.

3 Чернобровов Н.В. Релейная защита. Учебное пособие для техникумов. Изд. 5-е, перераб. и доп. – М.: Энергия, 1974 – 680 с. с ил.

4 Беркович М.А., Молчанов В.В., Семенов В.А. Основы техники релейной защиты. 6-е изд., перераб. и доп. – М.: Энергоатомиздат, 1984. – 376 с., ил.


Страницы: 1, 2, 3


© 2010 Реферат Live