Рефераты

Курсовая работа: Проектирование закрытой системы теплоснабжения микрорайона города Томск

Определим среднюю нагрузку вентиляции за средне-отопительный период для школы и детского сада, Вт


, (2.22)

 Вт

 Вт

Суммарная средняя нагрузка вентиляции за средне-отопительный период для общественных зданий , Вт

, (2.23)

 Вт

2.2.3 Нагрузки горячего водоснабжения

В летний период тепловой поток, необходимый для приготовления горячей воды уменьшится и находится по формуле

, (2.24)

где КS – коэффициент, учитывающий снижение летнего расхода воды по отношению к зимнему. При отсутствии данных принимается КS = 0,8;

 (2.25)

Определим среднюю нагрузку на ГВС, за летний период для жилых зданий, Вт

 Вт

 Вт

Определим среднюю нагрузку на ГВС, за летний период для общественных зданий, Вт

 Вт

 Вт

Определим нагрузку на ГВС за летний период , кВт

,

 Вт

Результаты расчетов занесём в таблицу 3.

Таблица 3 - Сводная таблица тепловых нагрузок

Потребитель

теплоты

Тепловая нагрузка, кВт
Максимальный зимний

Холодного

месяца

Средне-

отопительный

Летний
Отопление 12376,83 10042,23 5938,35 -
Вентиляция 158,24 137,56 100,49 -
ГВС 2887,94 2887,94 2887,94 1848
Итого 15423 13067,73 8926,78 1848

3 РАСЧЁТ ТЕПЛОВОЙ СХЕМЫ КОТЕЛЬНОЙ.ВЫБОР ОСНОВНОГО ОБОРУДОВАНИЯ КОТЕЛЬНОЙ

3.1 Расчётная тепловая схема котельной

Рисунок 1 – Принципиальная схема котельной с паровыми котлами

ИСХОДНЫЕ ДАННЫЕ

Система теплоснабжения закрытая.

Температурный график 150-70;

Расход пара Dп = 5,8 кг/с;

давление пара Р = 0,7 МПа;

Температура пара tп = 180 0С;

Доля возврата конденсата β = 0,73;

Температура возвращаемого конденсата tк =95 ºС.

Нагрузка микрорайона 15423 кВт

Дросселирование пара только для собственных нужд и на сетевые подогреватели до давления 6 МПа и слабо перегретый пар 190ºС.

Расход сетевой воды, , кг/с

, (3.1)

где i11, i12 – энтальпии воды в подающей и обратной магистрали тепловой сети;

 кг/с

Расход пара на подогреватели сетевой воды, , кг/с

 , (3.2)

где i¢¢р – энтальпия редуцированного пара, при р = 0,6 МПа, t = 190 ºC, i¢¢р = 2867 кДж/кг (слабо перегретый пар);

 i¢к – энтальпия конденсата после сетевых подогревателей, i¢к = 80С, i¢к = 335,2 кДж/кг

кпд подогревателей ()

 кг/с

Суммарный расход свежего пара до редуцирования на внешних потребителей,  , кг/с

, (3.3)

, (3.4)

, (3.5)

где i¢р – энтальпия свежего пара, при р = 0,7 МПа, tп = 180 ºС i¢р = 2798,83 кДж/кг;

 кг/с

 кг/с

 кг/с

Расход пара на собственные нужды, кг/с, предварительно принимается в размере 5 % от внешнего потребления пара

, (3.6)

 кг/с

Потери внутри котельной принимаем 2-5% от общего расхода пара. Принимаем потери пара 3%.

, (3.7)

 кг/с

Общая паропроизводительность котельной будет:

 (3.8)

 кг/с

Количество потерянного на производстве конденсата, , кг/с

, (3.9)

 кг/с

Количество возвращаемого конденсата тогда будет  кг/с

 (3.10)

 = 12,772-6,11-0,59-0,372-1,566 = 4,134 кг/с.

Потери конденсата с учётом 3% его потерь внутри котельной, , кг/с

, (3.11)

 кг/с

Расход химически очищенной воды при величине потерь в тепловой сети 2% от общего расхода сетевой воды, , кг/с

, (3.12)

 кг/с

Расход на собственные нужды ВПУ принимаем равным 25% от расхода химически очищенной воды, получим расход сырой воды, , кг/с

, (3.13)

 кг/с

Расход пара на пароводяной подогреватель сырой воды, , кг/с


, (3.14)

 кг/с

Количество воды поступающей от непрерывной продувки,, кг/с

Продувка может составлять 2-10% номинальной производительности котла. Если Gпр > 0,28 кг/с необходимо устанавливать расширитель продувки. Примем размер продувки 5%.

; (3.15)

кг/с

Расширитель продувки необходим.

3.2 Расчёт расширителя продувки

Рисунок 2 - Схема потоков расширителя продувки

Количество пара, полученного в расширителе продувки, , кг/с


, (3.16)

где i¢пр – энтальпия воды при давлении в котле 0,7 МПа;

i¢¢пр – энтальпия воды при давлении в расширителе продувки 0,12 МПа;

i¢п – энтальпия пара при давлении в расширителе продувки;

х – степень сухости пара, выходящего из расширителя;

i¢пр = 4,19×195 = 817,1 кДж/кг;

i¢¢пр = 4,19×104 = 435,8 кДж/кг;

i¢п = 2684,5 кДж/кг;

x = 0,98 кг/кг;

кг/с

3.3 Расчёт подогревателя химически очищенной воды

Подогрев химически очищенной воды после ВПУ производится в водоводяном теплообменнике за счет охлаждения подпиточной воды для тепловой сети после деаэратора со 104 до 70оС.

Рисунок 3 - Схема работы теплообменника для подогрева ХОВ

Температура химически очищенной воды, поступающей в деаэратор, определяется из уравнения теплового баланса , оС

, (3.17)

 ºС

Энтальпия ХОВ, поступающей в деаэратор:

 кДж/кг

3.4 Расчёт деаэратора

Рисунок 4 – Схема потоков, поступающих в деаэратор

Параметры потоков:

конденсат с производства – Gк = 4,134 кг/с; tкп = 95 0С; iкп = 398 кДж/кг;

конденсат из подогревателей сырой воды – Dсв = 0,174 кг/с; iк// = 670,5 кДж/кг

пар из расширителя продувки – Dпр = 0,11 кг/с; i/п = 2683 кДж/кг;

конденсат сетевых подогревателей – Dпсв = 6,21 кг/с; iк/ = 335,2 кДж/кг; tк/ = 80 0C;

ХОВ – Gхов = 2,858 кг/с; t//хов = 40,9 0C; i/хов = 171,37 кДж/кг;

греющий пар – iр// = 2867 кДж/кг.

Суммарное количество воды и пара, поступающего в деаэратор без учета расхода греющего пара, , кг/с

, (3.18)

 кг/с

Средняя энтальпия смеси в деаэраторе, , кДж/кг

 кДж/кг

Температура смеси , оС

,

оС

Расход пара на деаэратор, , кДж/кг

, (3.19)

где iпв – энтальпия питательной воды, кДж/кг;

 кг/с

Суммарный расход редуцированного пара для собственных нужд внутри котельной, , кг/с

, (3.20)

 кг/с

Расход свежего пара на собственные нужды, , кг/с

, (3.21)

 кг/с

Паропроизводительность котельной, т/ч, с учетом внутренних потерь 3 %

, (3.22)

 кг/с = 46 т/ч

Расхождение:

% < 3 %

3.5 Выбор основного оборудования

Принимаем для установки газомазутные котлы марки ДЕ–6,5–14ГМ производительностью 6,73 т/ч каждый. Принимаем к установке 8 котлов, общая паропроизводительность:

 т/ч, запас 14,56%.

Проверим соответствие условию надёжности: в случае выхода из строя одного большого котла, оставшиеся должны покрывать нагрузку холодного месяца, т.е. паропроизводительность котельной должна быть не меньше 44,1 т/ч:

, (3.23)

 кг/с

, (3.24)

 кг/с

, (3.25)

 кг/с

, (3.26)

5,7 = 10,87 кг/с

; (3.27)

кг/с = 42,53 т/ч;

В случае выхода из строя одного из котлов общая паропроизводительность будет:

т/ч > 42,53 т/ч – условие выполняется.

Принципиальная схема котельной с паровыми котлами представлена на формате А3 (Лист 2).


4 ГИДРАВЛИЧЕСКИЙ РАСЧЁТ ТЕПЛОВЫХ СЕТЕЙ

Задачей гидравлического расчета является определение диаметров участков теплосети и падение давления в них. Поскольку в начале расчета неизвестен ряд требуемых величин, то задачу решают методом последовательных приближений.

Расчет начинают с магистральных участков и ведут от самого дальнего участка в направлении источника.

Задают удельное линейное падение давления. Для магистральных участков трубопроводов принимается Rл = 80 Па/м, в ответвлениях по расчету, но должно выполняться условие Rл ≤ 300 Па/м.

Расход сетевой воды в трубопроводах G, кг/с, определяется по формуле

, (4.1)

где Q – тепловая нагрузка расчетного участка, кВт;

с – теплоемкость воды, с = 4,187 кДж/(кг×град);

t 1, t2 – температуры сетевой воды в подающей и обратной линиях.

Рассчитывают необходимый диаметр трубопровода d, м, по формуле

d = А G0.38 / R, (4.2)

где А= 117 ∙ 10-3 м0,62 / кг0,19 при kэ = 0,0005 м.

Затем округляют его до стандартного и уточняют значение Rл по формуле:

 = А G2 / d5.25 , (4.3)


где А = 13,62 ∙ 10-6 м3,25 кг, если kэ = 0,0005 м.

Полное падение давления на участке , Па

ℓ(1+α), (4.4)

где α – коэффициент местных потерь давления;

α =, (4.5)

где Z – опытный коэффициент, принимаем .

Потери напора на участке , м

, (4.6)

где ρ – плотность воды при средней температуре теплоносителя, кг/м3.

Произведём расчёт второго участка.

Участок 1.

,

 кг/с

 м, стандартный принимаем d1 = 0,082 м

 Па/м

 Па

 м.

Аналогичным образом рассчитываются остальные участки магистралей. Затем переходят к ответвлениям. Ответвления рассчитывается как транзитный участок с заданным падением давления. Падение давления в ответвлении равно сумме падений давления на участках, расположенных от места ответвления к абоненту до конца главной магистрали, Па:

 (4.7)

Определяется предварительное удельное линейное падение давления в ответвлении:

 (4.8)

По этому значению рассчитывается предварительный диаметр, далее он округляется до стандартного, затем уточняется значение удельного линейного падения давления, определяются потери давления и напора аналогично расчету главной магистрали.

Произведём расчёт тринадцатого участка.

Участок 13:

 Па;

 кг/с;

 Па/м

 м, стандартный принимаем d14 = 0,07 м;

 Па/м

 Па

 м.

Аналогичным образом рассчитываются все остальные ответвления. Затем определяются суммарные потери напора от котельной до рассматриваемого абонента SDН. Полученные результаты занесены в таблицу 6.

Необходимо, чтобы суммарные потери давления по магистральным линиям расходились не более чем на 15 %.

% < 15 %.


Таблица 6 – Гидравлический расчет трубопроводов

№ участка Q, кBт G, кг/с l, м предварительный расчёт окончательный расчёт
P, Па

Rл, Па/м

d, мм d, мм

Rл, Па/м

P, Па H, м H, м
1 388,7 1,547 42 - 80 60 51 199,9 0,049 8807 0,936

8,625

2 777,4 3,094 164 - 80 78 82 65,75 0,07 11537 1,22 7,329
3 2212,6 8,807 222 - 80 116 125 58,22 0,118 14449 1,536 6,109
4 4341,8 17,282 190 - 80 150 150 86,07 0,166 19067 2,027 4,573
5 6471 25,758 186 - 80 174 184 65,42 0,203 14638 1,557 2,546
6 8600,2 34,233 100 - 80 194 207 62,26 0,234 7682 0,817 0,989
8 233,9 0,931 152 - 80 49 51 72,42 0,038 11426 1,21

8,485

9 1011,3 4,025 352 - 80 86 82 111,2 0,08 42273 4,49 7,275
10 1643,8 6,543 126 - 80 103 100 103,69 0,102 14397 1,531 2,785
11 3097,1 12,328 62 - 80 132 150 43,8 0,140 3095 0,329 1,254
12 4550,4 18,113 64 - 80 153 150 94,55 0,170 7079,9 0,753 0,925
13 13152 52,35 28 8807

80

139,9

229 259 44,89 0,289 1620 0,172 0,172
14 388,7 1,547 60 54 70 37,72 0,049 2374 0,252 7,581
15 1064,6 4,237 38 20344 300 68 70 282,9 0,082 11634,9 1,237 7,346
16 370,6 1,475 190 20344 102,1 56 70 34,29 0,048 6831 0,726 6,835
17 1064,6 4,237 36 34793

300

300

68 70 282,9 0,082 11022 1,172 5,745
18 1064,6 4,237 50 68 70 282,9 0,082 15309 1,628 6,201
19 1064,6 4,237 42 53860 300 68 70 282,9 0,082 12859 1,367 3,913
20 1064,6 4,237 52

53860

68498

300

300

68 70 282,9 0,082 15921 1,693 4,239
21 1064,6 4,237 42 68 70 282,9 0,082 12859 1,367 2,356
22 1064,6 4,237 52 68498 300 68 70 282,9 0,082 15921 1,693 2,682
23 388,7 1,547 60 11426 181,5 51 70 37,7 0,049 2372 1,338 8,613
24 388,7 1,547 44

11426

53698

247,5

300

48 51 199,9 0,049 9226 0,981 8,256
25 388,7 1,547 44 46 51 199,9 0,049 9226 0,981 3,776
№ участка Q, Bт G, кг/с l, м предварительный расчёт окончательный расчёт
P, Па

Rл, Па/м

d, мм d, мм

Rл, Па/м

P, Па H, м H, м
26 243,8 0,970 168 53698 300 39 40 284,7 0,039 49694 5,285 8,07
27 1064,6 4,237 96

68095

68095

300

300

68 70 282,9 0,082 29393 3,126 4,38
28 388,7 1,547 76 46 51 199,9 0,049 15936 1,695 2,949
29 1064,6 4,237 96 71190 300 68 70 282,9 0,082 29393 3,126 4,051
30 388,7 1,547 44 71190 300 46 51 199,9 0,049 9226 0,981 1,906

Страницы: 1, 2, 3


© 2010 Реферат Live