Рефераты

Курсовая работа: Цифровой дозиметр

Курсовая работа: Цифровой дозиметр

Белорусский Государственный Университет Информатики и Радиоэлектроники

Факультет компьютерного проектирования

Кафедра ЭТТ

Пояснительная записка

к курсовому проекту на тему:

"Цифровой дозиметр "

Выполнил:

Ст.

Минск 2001


Содержание

Введение

1. Основные свойства, виды и источники радиоактивных излучений

2. Основные характеристики источников излучения

3. Выбор датчика

4. Разработка и обоснование структурной схемы прибора

5. Расчет параметров узлов преобразующих сигнал

5. Выбор системы обработки информации и ее вывода

6. Рассмотрим функциональное назначение выводов микросхемы - контроллера клавиатуры и дисплея

Заключение


Введение

Радиоактивность - это способность некоторых природных элементов (радия, урана, тория и др.), а также искусственных радиоактивных изотопов самопроизвольно распадаться, испуская при этом невидимые и неощущаемые человеком излучения. Такие элементы называются радиоактивными. Самопроизвольное превращение (распад) приводит к изменению их атомного номера или массового числа. В первом случае происходит превращение одного химического элемента в другой, а во втором - превращение изотопов данного химического элемента.

Если посмотреть на таблицу Менделеева, то можно отметить, что у большинства химических элементов есть радиоактивные и нерадиоактивные (стабильные) изотопы. Вещество, которое имеет в своем составе радиоактивные нуклиды (радионуклиды), называют радиоактивным.

В результате аварии на Чернобыльской АЭС в 1986 году произошло радиоактивное загрязнение значительных территорий как у нас в стране, так и за рубежом.

На Украине - в северной части Киевской, Житомирской, Ровенской и других областях загрязнились поля, луга, леса, пастбища, открытые водоемы, другие объекты окружающей среды, что не только осложнило сельскохозяйственные работы агропромышленного комплекса, лесоводство, но и затруднило ведение приусадебного хозяйства в сельской местности, а для многих горожан - на дачных садово-огородных участках.

Известно, что радиоактивное загрязнение местности представляет собой серьезную опасность для здоровья и жизни людей, если его не учитывать и не принимать определенных технических и профилактических мер. Поражающее действие радиоактивных веществ (радионуклидов) вызывается ионизирующими излучениями, воздействие которых может ухудшить здоровье людей и животных, а также привести к серьезным заболеваниям. Опасность радиоактивных излучений усугубляется еще и тем, что все они невидимы и до заболевания непосредственно не ощущаются человеком. Обнаружить их можно только специальными приборами.


1. Основные свойства, виды и источники радиоактивных излучений

В течение своей жизни и всего биологического развития человек облучался и в настоящее время продолжает подвергаться воздействию радиоактивного излучения от естественного природного фона. Это относится ко всему населению земного шара и речь идет об естественной радиоактивности.

Естественные источники излучения, производящие этот фон, разделяют на две категории: внешнего и внутреннего облучения. К внешним относятся космические (галактические) излучения, солнечная радиация, излучения от горных пород земной коры и воздуха. Облучают нас даже собственные стены, то есть стройматериалы, из которых изготовлены здания и сооружения.

Содержание природных радионуклидов в пищевых продуктах:

Удельная радиоактивность,
Бк/кг, по  по
Продукт
калию-40 радию-226
Пшеница 148,0 0,074-0,096
Картофель 129.5 0,022-0,044
Горох 273,8 0,29-0,87
Говядина 85,1 0,029-0,074
Рыба 77,7 0,015-0,027
Молоко 44,4 0,001-0,0099
Свинина 33,3 -
Масло сливочное 3,7 0,037-0,011
Вода речная 0,037-0,592 0,009-0,080

Например, в Швеции был измерен фон излучения почти в тысяче квартир (677 домов из 13 городов), построенных из различных материалов: деревянные, кирпичные, бетонные и каменные. Все они были построены до 1946 года, то есть до начала крупных испытаний атомного оружия. Результаты измерений показали, что в деревянных строениях фоновые облучения человека примерно в два раза ниже, чем на открытой местности, в кирпичных - примерно такие же, бетонных - в два, а в гранитных примерно в четыре раза выше, чем на открытой местности.

Внутреннее облучение человека обусловлено теми естественными радиоактивными веществами, которые попадают внутрь организма с воздухом, водой, продуктами питания. Это радиоактивные газы, которые поступают из глубины земных недр (радон, торон и др.), а также радиоактивный калий, уран, торий, рубидий, радий, которые входят в состав пищевых продуктов, растений и воды.

Ионизирующая способность радиоактивности излучения зависит от его типа и энергии, а также свойства ионизирующего вещества и оценивается удельной ионизацией, которая измеряется количеством ионов этого вещества, создаваемых излучением на длине в 1 см. Чем больше величина удельной ионизации, тем быстрее расходуется энергия излучений, т.е. тем меньший путь пройдет излучение в веществе до полной потери своей энергии. Поэтому чем больше ионизирующая способность излучения, тем меньше его проникающая способность, и наоборот.

Поражение человека радиоактивными излучениями возможно в результате как внешнего, так и внутреннего облучения. Внешнее облучение создается радиоактивными веществами, находящимися вне организма, а внутреннее - попавшими внутрь с воздухом, водой и нищей. Очевидно, что при внешнем облучении наиболее опасны излучения, имеющие высокую проникающую способность, а при внутреннем - ионизирующую.

Считают, что внутреннее облучение более опасно, чем внешнее, от которого нас защищают стены помещений, одежда, кожные покровы, специальные средства защиты и др.

Внутреннее же облучение воздействует на незащищенные ткани, органы, системы тела, причем на молекулярном, клеточном уровне. Поэтому внутреннее облучение поражает организм больше, чем такое же внешнее.

Основные типы радиоактивных излучений: альфа, бета, нейтронные (группа корпускулярных излучений), рентгеновские и гамма-излучения (группа волновых). Корпускулярные представляют собой потоки невидимых элементарных частиц, имеющих массу и диаметр. Волновые излучения имеют квантовую природу. Это электромагнитные волны в сверхкоротковолновом диапазоне.

Альфа-излучение представляет собой поток альфа-частиц, распространяющихся с начальной скоростью около 20 тыс. км/с. Их ионизирующая способность огромна, а так как на каждый акт ионизации тратится определенная энергия, то их проникающая способность незначительна: длина пробега в воздухе составляет 3-11 см, а в жидких и твердых средах - сотые доли миллиметра. Лист плотной бумаги полностью задерживает их. Надежной защитой от альфа-частиц является также одежда человека.

Поскольку альфа-излучение имеет наибольшую ионизирующую, но наименьшую проникающую способность, внешнее облучение альфа-частицами практически безвредно, но попадание их внутрь организма весьма опасно.

Бета-излучение - поток бета-частиц, которые в зависимости от энергии излучения могут распространяться со скоростью, близкой к скорости света (800 тыс. км/с). Заряд бета-частиц меньше, а скорость больше, чему альфа-частиц, поэтому они имеют меньшую ионизирующую, но большую проникающую способность. Длина пробега бета-частиц с высокой энергией составляет в воздухе до 20 м, воде и живых тканях - до 3 см, металле - до 1 см. На практике бета-частицы почти полностью поглощают оконные или автомобильные стекла и металлические экраны толщиной в несколько миллиметров. Одежда поглощает до 50% бета-частиц.

При внешнем облучении организма на глубину около 1 мм проникает 20-25% бета-частиц. Поэтому внешнее бета-облучение представляет серьезную опасность лишь при попадании радиоактивных веществ непосредственно на кожу (особенно на глаза) или же внутрь организма. Так, после Чернобыльской аварии наблюдались бета-ожоги ног за 50-100 км от АЭС (например, в г. Народичи Житомирской области). Поэтому местному населению не рекомендовалось ходить по земле босиком.

Нейтронное излучение представляет собой поток нейтронов, скорость распространения которых достигает 20 тыс. км/с. Так как нейтроны не имеют электрического заряда, они легко проникают в ядра атомов и захватываются ими. При ядерном взрыве большая часть нейтронов выделяется за короткий промежуток времени. Они легко проникают в живую ткань и захватываются ядрами ее атомов. Поэтому нейтронное излучение оказывает сильное поражающее действие при внешнем облучении. Лучшими защитными материалами от них являются легкие водородсодержащие материалы: полиэтилен, парафин, вода и др.

Гамма-излучение - это электромагнитное излучение, испускаемое ядрами атомов при радиоактивных превращениях. Оно, как правило, сопровождает бета-распад, реже альфа-распад. По своей природе гамма-излучение представляет собой электромагнитное поле с длиной волны 10-8-10-12 см. Оно испускается отдельными порциями (квантами) и распространяется со скоростью света. Ионизирующая способность его значительно меньше, чем у бета-частиц и тем более у альфа-частиц. Зато гамма-излучение имеет наибольшую проникающую способность и в воздухе может распространяться на сотни метров. Для ослабления его энергии в два раза необходим слой вещества (слой половинного ослабления) толщиной: воды - 23 см, стали - около 3, бетона-10, дерева-30 см. Из-за наибольшей проникающей способности гамма-излучение является важнейшим фактором поражающего действия радиоактивных излучений при внешнем облучении.

Хорошей защитой от гамма-излучений являются тяжелые металлы, например свинец, который для этих целей используется наиболее часто.

Рентгеновские излучения (икс-лучи) были открыты первыми из всех ионизирующих излучений и наиболее хорошо изучены. У них та же физическая природа (электромагнитное поле) и те же свойства, что и у гамма-излучений. Их различают прежде всего по способу получения, и в отличие от гамма-лучей они имеют внеядерное происхождение. Излучение получают в специальных вакуумных рентгеновских трубках при торможении (ударе о специальную мишень) быстро летящих электронов. Энергия квантов рентгеновских лучей несколько меньше, чем гамма-излучения большинства радиоактивных изотопов; соответственно несколько ниже их проникающая способность. Однако это второстепенные различия. Поэтому рентгеновские лучи широко используют вместо гамма-излучения, в частности для экспериментального облучения животных, семян растений и т.п. С этой целью применяют рентгеновские установки для облучения (просвечивания) людей. Лучшими защитными материалами от рентгеновских лучей являются тяжелые металлы и в частности свинец.

В последние десятилетия появилась возможность получать электромагнитные излучения высокой энергии с помощью ускорителей заряженных частиц. Такое синхротронное излучение обладает теми же свойствами, что и рентгеновское и гамма-излучение.

В настоящее время основными источниками радиоактивного загрязнения окружающей среды являются:

урановая промышленность, которая занимается добычей, переработкой, обогащением и приготовлением ядерного топлива. Основным сырьем для этого топлива является уран-235. Аварийные ситуации могут возникнуть при изготовлении, хранении и транспортировке тепловыделяющих элементов (твэлов). Однако, вероятность их незначительная;

ядерные реакторы разных типов, в активной зоне которых сосредоточены большие количества радиоактивных веществ;

радиохимическая промышленность, на предприятиях которой производится регенерация (переработка и восстановление) отработанного ядерного топлива. Они периодически сбрасывают сточные радиоактивные воды, хотя и в пределах допустимых концентраций, но тем не менее в окружающей среде неизбежно могут накапливаться радиоактивные загрязнения. Кроме того, некоторое количество радиоактивного газообразного йода (йод-131) все-таки попадает в атмосферу;

места переработки и захоронения радиоактивных отходов из-за случайных аварий, увязанных с разрушением хранилищ, также могут явиться источниками загрязнения окружающей среды;

использование радионуклидов в народном хозяйстве в виде закрытых радиоактивных источников в промышленности, медицине, геологии, сельском хозяйстве н других отраслях. При нормальном хранении и использовании этих источников загрязнение окружающей среды маловероятно. Однако в последнее время появилась определенная опасность в связи с использованием радиоактивных источников в космических исследованиях и астронавтике. При запуске ракет-носителей, а также при посадке спутников и космических кораблей возможны аварийные ситуации. Так, при аварии Челенджера (США) сгорели радионуклидные источники тока, работающие на стронции-90. Также произошло загрязнение атмосферы над Индийским океаном в июне 1969 г., когда сгорел американский спутник, на котором генератор тока работал на плутонии-238. Тогда в атмосферу попали радионуклиды с активностью 17 тыс. кюри.

Вместе с тем наибольшее загрязнение окружающей среды все же создает сеть радиоизотопных лабораторий (которые имеются в очень многих странах мира), занимающихся использованием радионуклидов в открытом, виде для научных и производственных целей. Сбросы радиоактивных отходов в сточные поды даже при концентрациях, меньше допустимых, с течением времени приведут к постепенному накоплению радионуклидов во внешней среде;

ядерные взрывы и возникающее после взрыва радиоактивное загрязнение местности (могут быть как локальные, так и глобальные выпадения радиоактивных осадков). Масштабы и уровни радиоактивных загрязнений при этом зависят от типа ядерных боеприпасов, вида взрывов, мощности заряда, топографических и метеорологических условий.


2. Основные характеристики источников излучения

Источник ионизирующего излучения - это объект, содержащий радиоактивный материал или техническое устройство, испускающее или способное в определенных условиях испускать ионизирующее излучение.

a-источники. Преимущественно альфа-излучение наблюдается у естественных радионуклидов: радия, тория, урана и других элементов с большим атомным числом. Кроме естественных a-активных ядер, с испусканием a-частицы распадается подавляющее большинство искусственно полученных радиоактивных элементов, следующих за свинцом. Старость вылетающих, из ядер радиоактивных атомов a-частиц лежит в диапазоне (4-6) - 103 м/с, энергия порядка 2-9МэВ.

Альфа-излучение источников имеет преимущества по сравнению с другими видами излучения (высокая ионизирующая способность, моноэнерготичность a-частиц, постоянство ионизации вдоль пути частицы), но малый пробег в веществе и трудности изготовления достаточно мощных a-источников несколько ограничивают их использование.

Чаще. всего источники; представляют собой подложки из коррозийно-стойкой стали или керамики в алюминиевых корпусах, в углубление которых помещены радионуклиды плутония. Энергетическое распределение a-частиц дискретно, их энергии определены с точностью до четвертого знака. Малая естественная ширина линий, хорошо известные значения энергии каждой группы a-частиц позволяют использовать радиоактивные a-источники для определения энергетической шкалы и энергетического разрешения детекторов. Для реализации этих свойств a-источники изготавливают в виде слоя толщиной много меньше линейного пробега частицы в веществе источника, с том, чтобы неопределенность. в анергии a-частиц, вышедших из слоя конечной толщины, была впалой.

b-источники. Известны три типа b-распада нестабильных ядер, которые сопровождаются излучением электрона, позитрона ила захватом атомного электрона. Характерные особенности этих процессов состоят в том, что электроны в отличие от a-частиц не являются моноэнергетическими, а обладают энергиями от некоторого максимума до нуля. Еmax принимает значения от 15 кэВ до 15 МэВ, при этом с увеличением энергии, выделяемой при b-распаде, уменьшается период полураспада. Удельная ионизирующая способность b-частиц в несколько раз меньше, чем у a-частиц той же энергии и значительно больше, чем у g-квантов.

Известно свыше семисот искусственных b-изотопов, расположенных довольно равномерно по всей периодической системе Менделеева. Трудно назвать элемент, не имеющий хотя бы одного b-активного изотопа. К числу их следует прибавить большое количество искусственных радиоактивных ядер преимущественно с малыми атомными номерами, попускающих позитроны.

В настоящее время разработана целая серия ампутированных источников b-излучения. Ампулы этих источников изготавливают из алюминия (его сплавов) или нержавеющей стали с рабочим окном из металлической фольги. Подложки, на которых закрепляется радиоактивный препарат, у источников b-излучения изготавливают из металла или керамики. В исампутированных источниках b-излучения для герметизации радиоактивного препарата используют покрытия в виде окисных или металлических пленок.

Источники g-излучения. Известно, что g-излучения возникают при переходах между различными энергетическими уровнями возбужденных ядер. Кроме этого, существуют еще два механизма возникновения коротковолнового электромагнитного излучения: при торможении быстрых электронов и аннигиляции электронно-позитронных пар. Практически во всех этих случаях спектр g-излучения - дискретен, а энергия g-квантов - от нескольких десятков килоэлектрон-вольт до 20 МэВ.

Чаще всего используют радиоактивные источники g-квантов, к числу которых в первую очередь относятся активные b-препараты. Период полураспада g-источника определяется периодом b-распада, как правило, энергия g-квантов меньше 3 МэВ, активность 'квантов может быть порядка 10 16 с-1.

g-источники широко применяются для градуировки детекторов, при этом особенно ценны источники, спектр которых состоит из одной или в крайнем случае из двух-трех линий, далеко отстоящих друг от друга. В табл.2 приведены основные характеристики некоторых радиоактивных g-источников, применяемых для градуировки дозиметров.

Для градуировки детекторов часто используют g-источники, являющиеся результатом возбуждения ядра вследствие ядерных реакций. На легких ядрах удобно использовать (р, g) - реакцию при энергии ускоренных протонов около 1 МэВ. Например, в реакции 9Be (pg) 10B при энергии протона около 991 кэВ возникают g-кванты с энергией 7,48 МэВ. g-кванты с энергией 20 МэВ образуются в реакции Т (р, g) 4He.

Благодаря наличию у современных ядерных реакторов мощных потоков нейтронов плотностью порядка 1018-1019 c-1м-2, удобно использовать в качестве источника g-излучения (n,g) - реакцию. Образовавшееся в результате испускания нейтрона новое ядро возбуждается, а затем излучает g-кванты. Поместив образец из подходящего материала на выходе канала в защите реактора, можно получить источник g-квантов с активностью квантов до 108 с-1.

Зная положение на энергетической шкале и интенсивность g-линий при захвате, можно сразу произвести градуировку детектора, например, полупроводникового спектрометра в широком диапазоне энергий.


Таблица 2

Изотоп Период полураспада Энергия g-квантов, кэВ Выход g-квантов на pаспад

141Се

32.5 суток 145,4 0.67

137Cs

33 года 661,1 0,92

65Zn

245 суток 1112 0,455
511,006 0,03

60Со

5,25 года 1173,2 1,0
1332,5 1,0

24Na

14,9 ч 1368.5 1,0
2753,9 1,0

В качестве источника g-квантов можно использовать также активную зону реактора, в которой возникают так называемые мгновенные g-кванты деления, g-излучение продуктов деления и g-излучение из (n, g) - реакции. Интенсивность g-излучение на поверхности активной зоны может быть около 1018 МэВ/ (м2*с).

Эффект излучения электромагнитных волн электронами при торможении позволяет использовать для получения g-излучения электронные ускорители. Так, например, современный электронный ускоритель со средним током 1 мкА и энергией ускоренных электронов 30-40 МэВ создает мощность дозы около 102 Гр/с в 1 м от вольфрамовой мишени.

Все рассмотренные источники излучения либо имеют сплошной' спектр, либо недостаточную для экспериментов интенсивность. Пока единственный практически осуществимый источник получения моноэнергетических g-квантов - процесс аннигиляции электронно-позитронных пар. При средних таких в линейных электронных ускорителях порядка 10 мкА можно создать источники фотонов с точно определенной энергией в десятки мегаэлектронвольт и активностью квантов 105-106 с-1.

Очень перспективно использование для получения монохроматических g-квантов квантовых генераторов света и мощных электронных ускорителей на основе обратного комптон-эффекта. Интенсивный пучок световых фотонов из лазера направляется навстречу пучку релятивистских (т.е. движущихся со скоростями, близкими к скорости распространения электромагнитных волн в свободном пространстве) электронов. Энергия фотонов вследствие рассеяния на быстрых электронах увеличивается. Согласно расчетам, при современных параметрах лазеров и ускорителей можно получить поток g-квантов 105-107 с-1 с размытием по энергии около 5%. Диапазон возможных значений энергий фотонов необычайно широк, вплоть до единиц гигаэлектрон-вольт.

Источники нейтронов. Основные характеристики нейтронных источников: поток нейтронов, энергия нейтронов, их угловое распределение, а также энергия н интенсивность сопутствующего гамма-излучения. Известны три основных типа нейтронных. источников:

1) радиоактивные, основанные на реакциях (a, n), (g, п), и спонтанного деления;

2) ускорители;

3) ядерные реакторы.

В настоящее время источники нейтронов широко применяют в научных исследованиях, при геологической разведке, для эталонирования и градуировки аппаратуры, регистрирующей нейтроны. Одними из первых начали использоваться полоннево (радиево) - бериллиевые нейтронные источники, которые представляют собой спрессованную смесь альфа-активного вещества (22688Ra, 21084Po) с порошкообразным бериллием, основанные на реакции 94Ве+42Неà126С+10п+5,7 МэВ.

Средняя энергия нейтронов первого источника 4,2 МэВ (максимальная-до 11 МэВ). Энергия нейтронов Ra - Ве-источника составляет 13 - 15 МэВ. Недостатком первого - сравнительно короткий период полураспада (138,4 дня), а второго - интенсивное g-излучение.

Применяют также так называемые фотонейтронные источники, в которых используются пороговые реакции фоторасщепления (у, п) ядер. Они представляют собой ампулу с источником g-излучения, помещенную в бериллиевую сферу. Нейтроны, полученные с помощью подобных источников, обладают более определенной энергией. Из фотонейтронных наиболее широко распространен Ra-Be (g, n) - источник. Получение нейтронов при помощи ядерного фотоэффекта. возможно лишь в том случае, когда энергия g-квантов превышает энергию связи нейтрона в ядре. Среди стабильных ядер наименьшими значениями энергии связи отличаются имению бериллий и дейтерий.

Полный. поток нейтронов для. самопроизвольно делящихся ядер, очень мал, но зато он практически вечен.

Развитие ядерной энергетики привело к тому, что в настоящее время возможно получение трансурановых элементов, имеющих выход нейтронов в достаточных, количествах. Так, спонтанный источник 239Ри, обогащенный 240 Ри до 8%, имеет поток нейтронов 2*104 с-1.

3. Выбор датчика

Выбираем газоразрядный счётчик. Ниже рассмотрим его плюсы и минусы по сравнению с другими видами детекторов.

При небольшой разности потенциалов на электродах газовый детектор работает в режиме ионизационной камеры, т.е. числовое значение импульсов в некотором интервале напряжений постоянно. При дальнейшем увеличении напряжения числовое значение выходного импульса возрастает, так как при этом электроны (полученные вследствие действия ионизирующей частицы) в усилившемся электрическом поле приобретают достаточную кинетическую энергию, чтобы произвести ударную ионизацию нейтральных молекул газа на своем пути. Вновь образованные электроны в свою очередь ускоряются электрическим полем и ионизируют новые молекулы. При этом. получается лавинный разряд, который сразу прекращается, как только образованные электроны и ионы достигнут соответствующих электродов детектора (несамостоятельный разряд). Коэффициент газового усиления k изменяется от единицы до 106. Газовый ионизационный детектор, который имеет коэффициент газового усиления больше единицы и в котором отдельные акты ионизации вызывают появление на выходе электрических импульсов, называют газоразрядным счетчиком.

Газоразрядный счетчик, который работает в режиме несамостоятельного газового разряда и в котором заряд в импульсе пропорционален первичной ионизации, называют пропорциональным счетчиком. В пропорциональных счетчиках чаще всего используют метан. или смесь метана и аргона,. которые пропускают через счетчик. Напряжение составляет 2-4 кВ. Если измеряемый радионуклид на очень тонкой подложке (для уменьшения поглощения) расположить между двумя пропорциональными счетчиками, то можно получить так называемый 4п-счетчик, который позволяет проводить измерения со 100% -ной эффективностью счета и пригоден для проведения абсолютных определений, например, при эталонировании. В настоящее время пропорциональные счетчики широко применяют в виде многопроволочных пропорциональных камер - набора проволочек малого диаметра (20-30 мкм), pacпoложенных с шагом 2-3 мм и служащих анодами. Электроды катода, расположенные с обеих сторон, также представляют собой набор проволочек, но несколько большего диаметра и с меньшим шагом. Благодаря удачному сочетанию сравнительно высоких пространственного и временного разрешений, большому быстродействию, простоте изготовления и способноси работать в магнитных полях, конструкции пропорциональных камер интенсивно совершенствуются в последние годы. Разновидность пропорциональных камер - дрейфовая камера, которая является координатным детектором, обеспечивающим высокую точность измерения.

Если продолжать увеличивать напряжение на счетчике, то после области ограниченной пропорциональности, которая не используется в детекторах, следует область Гейгера. Кинетическая энергия электронов становится столь большой, что, ударяясь об анод, они выбивают из него фотоны, которые, попадая на катод, вырывают электроны, которые ионизируют молекулы газа, - каждый вторичный электрон вызывает вспышку самостоятельного разряда. Один актпервично и ионизации в области Гейгера может вызвать такой же импульс, как и 1000 первичных актов. Если в пропорциональных счетчиках импульс на выходе пропорционален энергии частицы, то в счетчиках Гейгера-Мюллера числовое значение выходного импульса совершенно не зависит от начальной ионизации. Поэтому, если с помощью пропорционального счетчика можно определять как число ионизирующих частиц, так и их вид и энергию, то счетчик Гейгера-Мюллера можно использовать только для подсчета числа пролетевших частиц. Для гашения самостоятельного разряда в счетчиках Гейгера-Мюллера используется конденсатор и высокоомное сопротивление. С помощью внешнего контура напряжение на счетчике снижается ниже. порога зажигания. Для емкости около 10 пФ сопротивление должно быть больше или порядка 108 Ом, тогда время разрядки емкости более 10-3 с. Для многих измерений такие временные характеристики недостаточны. В настоящее время счетчики Гейгера-Мюллера вытесняются самогасящимися счетчиками. Было обнаружено, что небольшие добавки паров этилового спирта в счетчике Гейгера-Мюллера, наполненном аргоном, приводят к гашению самостоятельного разряда. Этот эффект и используется в самогасящихся счетчиках. Их, кроме одноатомного газа (аргона, неона и др.), наполняют небольшой добавкой паров одного из многоатомных органических соединений (этилового спирта, этилена. и т.п.) Молекулы примесей нейтрализуют ионы основного газа и активно поглощают кванты электромагнитного излучения, обуславливая автоматическое гашение разряда.


Рис. 1. Схема включения (а) и счетная характеристика (б) газоразрядного счетчика

Обозначим через N число импульсов, регистрируемых в единицу времени, - скорость импульсов, выражаемая в с-1. Зависимость скорости счета импульсов от напряжения N (t) - счетная характеристика счетчика. На рис.1 приведена схема включения и счетная характеристика газоразрядного счетчика.

Если напряжение достигает потенциала зажигания U0, в газе возникает разряд и счетчик начинает считать импульсы. Скорость счета при увеличении напряжения возрастает и при напряжении U1 счетчик регистрирует уже все частицы, которые ионизируют газ. При дальнейшем увеличении напряжения в диапазоне U1-U2 значение скорости счета изменяется незначительно. Этот рабочий участок счетной характеристики счетчика называется плато счетчика. Наклон плато к оси абсцисс, %, определяют как отношение разности чисел отсчетов на протяжении 100 В плато к среднему числу отсчетов Nc.

Счетная характеристика тем лучше, чем больше плато по протяженности и меньше его наклон. У современных счетчиков наклон плато примерно равен 0,1% на 100 В, а протяженность плато достигает 400-500 В. Нижняя кривая на рис 1, б снята в отсутствии излучения и обусловлена естественным радиационным фоном: космическим излучением, радиоактивностью Земли, радиоактивным загрязнением воздуха. А предметов, окружающих счетчик.

Для определения мертвого времени счетчика Гейгера-Мюллера измеряют активность двух радионуклидов отдельно и вместе и из полученных скоростей счета N1, N2. и N12

Существуют различные виды газоразрядных счетчиков. Особенность конструкции торцового счетчика - окно в торце счетчика, закрытое пластинкой из слюды толщиной 0,01 мм, через которое могут проходить мягкие b - и a-частицы. Анод счетчика - вольфрамовая нить. Один конец нити закреплен! в стеклянном корпусе счетчика, а на другом, свободном конце нити, напаян стеклянный шарик, предназначенный для предотвращения искажения электрического поля.

Для измерения числа у-квантов применяют стеклянные счетчики. Они выполнены в виде стеклянной трубки, внутренняя поверхность которой покрыта тонким проводящим слоем (медыо, графитом и др.), являющимся катодом, анодом же служит вольфрамовая пять, натянутая по оси трубки. На концах трубки устроены выводы электродов: один вывод (со знаком плюс) соединен с нитью, другой (со знаком минус) - с катодом. Для регистрации более жестких излучений применяют цилиндрические счетчики, катод которых выполнен из алюминиевой фольги, а анод - из вольфрамовой нити, кренящейся на стеклянных изоляторах.

Страницы: 1, 2


© 2010 Реферат Live