Рефераты

Дипломная работа: Проектирование системы электроснабжения механического цеха

Дипломная работа: Проектирование системы электроснабжения механического цеха

Введение

Электрификация обеспечивает выполнение задачи широкой комплексной механизации и автоматизации производственных процессов, что позволяет усилить темпы роста производительности общественного труда, улучшить качество продукции и облегчить условия труда. На базе использования электроэнергии ведется техническое перевооружение промышленности, внедрение новых технологических процессов и осуществление коренных преобразований в организации производства и управлении им. Поэтому в современной технологии и оборудовании промышленных предприятий велика роль электрооборудования, т.е. совокупности электрических машин, аппаратов, приборов и устройств, посредством которых производится преобразование электрической энергии в другие виды энергии и обеспечивается автоматизация технологических процессов.

Электромашиностроение – одна из ведущих отраслей машиностроительной промышленности. Процесс изготовления электрической машины складывается из операций, в которых используется разнообразное технологическое оборудование. При этом основная часть современных электрических машин изготовляется методами поточно-массового производства. Специфика электромашиностроения заключается главным образом в наличии таких процессов, как изготовление и укладка обмоток электрических машин, для чего применяется нестандартизированное оборудование, изготовляемое обычно самими электромашиностроительными заводами.

Электромашиностроение характерно многообразием процессов, использующих электроэнергию: литейное производство, сварка, обработка металлов и материалов давлением и резанием, термообработка и т.д. Предприятия электромашиностроения широко оснащены электрифицированными подъемно-транспортными механизмами, насосными, компрессорными и вентиляторными установками.

Современная энергетика характеризуется нарастающей централизацией производства и распределения электроэнергии. Для обеспечении подачи электроэнергии от энергосистем к промышленным объектам, установкам, устройствам и механизмам служат системы электроснабжения состоящие из сетей напряжением до 1000 В и выше и трансформаторных, преобразовательных и распределительных подстанций. Для передачи электроэнергии на большие расстояния используются сверхдальние линии электропередач (ЛЭП) с высоким напряжением: 1150 кВ переменного тока и 1500 кВ постоянного тока.

В современных многопролетных цехах автомобильной промышленности широко используют комплектные трансформаторные подстанции (КТП), комплектные распределительные установки (КРУ), силовые и осветительные шинопроводы, аппараты коммутации, защиты, автоматики, контроля, учета и так далее. Это создает гибкую и надежную систему электроснабжения, в результате чего значительно уменьшаются расходы на электрообеспечение цеха.

Автоматизация затрагивает не только отдельные агрегаты и вспомогательные механизмы, но во все большей степени целые комплексы их, образующие полностью автоматизированные поточные линии и цехи.

Первостепенное значение для автоматизации производства имеют многодвигательный электропривод и средства электрического управления. Развитие электропривода идет по пути упрощения механических передач и приближения электродвигателей к рабочим органам машин и механизмов, а так же возрастающего применения электрического регулирования скорости приводов.

Целью настоящего дипломного проекта является проектирование электроснабжения механического цеха №5. Основной задачей настоящего проекта является проектирование надежного бесперебойного электроснабжения приемников цеха с минимальными капитальными затратами и эксплуатационными издержками и обеспечение высокой безопасности.


1. Расчетно-технологическая часть

1.1 Общая характеристика технологического процесса проектируемого цеха

Механический цех относится к основному производству машиностроительного предприятия. В нем выполняются операции по обработке деталей после отливки и доведение их до завершенного состояния с последующей отправкой в цех сборки. Преобладает оборудование по обработке металлов резанием. Присутствуют станки массового производства с ЧПУ, а также поточные конвейерные и автоматические линии.

Цех состоит из четырех пролетов, шириной по 12 м. Согласно требуемой технологии обработки изделий цех оснащен современным технологическим оборудованием – это металлорежущие станки, электропечи, точечные и шовные сварочные машины. Имеется общепромышленное оборудование – это подъемно-транспортные механизмы, насосы, вентиляторы

1.2 Характеристика потребителей электрической энергии. Выбор напряжения и схемы электроснабжения приемников цеха

Основными потребителями электрической энергии механического цеха являются металлорежущие станки, точечные и шовные сварочные машины, насосы, вентиляторы, электропечи и краны. Цех оснащен станками различного назначения: токарные, сверлильные, шлифовальные, фрезерные, плоско и круглошлифовальные, заточные, координатно-расточные, МРС с ЧПУ и другие.

Согласно Правилам Устройства Электроустановок электроприемники по бесперебойности электроснабжения относятся ко II и III категории. Электроприемники работают в повторно-кратковременном (ПКР) и длительном режимах.

Важной технической задачей, которую нужно решать при проектировании электроснабжения, является выбор напряжения силовой и осветительной сети. От правильности выбора будут зависеть потери напряжения, электроэнергии и многие другие факторы. Выбор напряжения основывается на сравнении технико-экономических показателей различных вариантов. При выборе напряжения для питания силовых и осветительных потребителей следует отдавать предпочтение варианту с более высоким напряжением, так как чем больше величина U, тем меньше ток в проводах, тем меньше сечение, меньше потери мощности и энергии.

Согласно Правилам Устройства Электроустановок и Правилам Технической Эксплуатации в Российской Федерации для электроустановок с U ≤ 1000 В приняты следующие стандартные напряжения переменного тока: 110 В, 220 В, 380 В, 660 В. Наибольшее распространение на предприятиях машиностроительной промышленности получила система трехфазного тока напряжением 380/220 В частотой 50 Гц с глухозаземленной нейтралью. Широко используется так же система напряжения 660/380 В.

Для проектируемого цеха применяем систему трёхфазного переменного тока с напряжением 380/220 В с глухозаземлённой нейтралью, что позволяет питать от одних и тех же трансформаторов силовые и осветительные нагрузки. Силовые потребители питаются напряжением 380 В, а освещение напряжением 220 В. Согласно требований Техники Безопасности питание цепей управления и местного освещения осуществляется пониженным напряжением: Цепи управления питаются напряжением 110 В, освещение 12 В или 24.

При питании силовой и осветительной сети от однотрансформаторной ТП возникает мигание света осветительных приборов, так как происходит запуск мощных двигателей и возникают большие пусковые токи. Поэтому питание осуществляют от двухтрансформаторной КТП. Силовые приемники с большими и частыми пиковыми нагрузками нужно подключить к одному из трансформаторов КТП, а более «спокойную» нагрузку к другому трансформатору. В этом случае рабочее освещение необходимо запитывать от трансформатора со «спокойной» нагрузкой, а аварийное освещение от трансформатора с «неспокойной» нагрузкой, с тем чтобы обеспечить надлежащее качество рабочего освещения.

Выбор схемы электроснабжения приемников цеха зависит от многих факторов:

·  мощности отдельных потребителей;

·  расположения потребителей;

·  площади цеха;

·  технологического процесса цеха, определяющего категорию электроприемников по бесперебойности электроснабжения.

Система электроснабжения должна удовлетворять следующим требованиям:

·  удобство и надежность обслуживания;

·  надлежащее качество электроэнергии;

·  бесперебойность и надежность электроснабжения как в нормальном, так и в аварийном режиме;

·  экономичность системы, то есть наименьшие капитальные затраты и эксплуатационные издержки;

·  гибкость системы, то есть возможность расширения производства без существенных дополнительных затрат.

Для передачи и распределения электроэнергии к цеховым потребителям применяем наиболее совершенную схему блока «трансформатор – магистраль», что удешевляет и упрощает сооружение цеховой подстанции. Такие схемы очень распространены и обеспечивают гибкость системы и ее надежность, а также экономичность в расходе материалов.

Электроснабжение выполняется магистральными шинопроводами, запитываемыми непосредственно от РУ – 0,4 цеховой КТП, к которым присоединяются распределительные шинопроводы, а от них радиальными линиями осуществляется питание всех электроприемников. Ответвления от ШМА к ШРА и от ШРА к отдельным приемникам выполняются проводами в тонкостенных трубах

1.3 Расчет осветительной и силовой нагрузки

1.3.1 Расчет мощности на электроосвещение цеха

Достаточная освещённость рабочей поверхности – это необходимое условие для обеспечения нормальной работы человека и высокой производительностью труда.

Для проектируемого цеха принимаем систему комбинированного освещения, состоящего из общего равномерного и местного освещения.

Расчёт мощности ведём методом «удельных мощностей». Суть этого метода в том, что установленная мощность светильников зависит от нормируемой освещённости цеха, высоты подвеса светильника, площади освещаемой поверхности, коэффициентов отражения потолка, рабочей поверхности и стен.

Освещение в цехе производим лампами ДРЛ. Согласно заданию среда в цехе нормальная, принимаем тип светильника УПДДРЛ. [1]

Норма освещённости согласно СНиП цехов машиностроительных заводов при освещении их лампами ДРЛ и люминесцентными лампами в зависимости от типа производства может лежать в пределах от 100 – 300 Лк.

Норму освещённости для производственных помещений цеха принимаем Енор. = 200 Лк. [1]

Высота подвеса светильника над рабочей поверхностью Нр., м определяется, в соответствии с рисунком 1, по формуле:


Нр. = Н – hc. – hp., м (1)

где Н – высота помещения цеха, м.

Н = 6 м (по заданию);

hc. – расстояние светильников от перекрытия, м. hc. = 0,7 м;

hp. – высота рабочей поверхности над полом, м. hр. = 0,8 м.

Нр. = 6 – 0,7 – 0,8 = 4,5

Площадь освещаемой поверхности данного пролёта Sпр., м2:

Sпр. = B × L, м2 (2)

где B – ширина цеха, м. B = 12 м (по заданию);

L – длина цеха, м. L = 72 м (по заданию).

Sпр. = 12 × 72 = 864 м2

Удельная мощность освещённости лампы ρуд., Вт/м2, определяется исходя из удельной мощности освещения при освещенности 100 Лк.

Для светильников УПД ДРЛ Енор. = 100 Лк, ρуд. = 5,4 Вт/м2 [1]

Для светильников УПД ДРЛ Енор. = 200 Лк, ρуд. = 5,4 ´ 2 = 10,8 Вт/м2

Допустимая мощность рабочего освещения одного пролета Рр.о.пр., Вт:

Рр.о.ц. = ρуд. × Sпр. (3)

Рр.о.пр. = 10,8 × 864 = 9331,2 Вт

Выбираем мощность лампы ДРЛ [1] и технические данные заносим в
 таблицу 1.


Таблица 1 Технические данные лампы ДРЛ

Тип лампы Светильник

Рн., Вт

Uл., В

Ф, Лм Срок службы, час Размер лампы, мм Ток лампы, А
D L рабочий пусковой

ДРЛ

400

УПД

ДРЛ

400 135 19000 10000 122 292 3,25 7,15

Число светильников рабочего освещения по пролету Nсв, шт.

Nсв = Рр.о.св/Рл = 9331,2/400 = 23,3 шт. (4)

Принимаем число светильников для пролета Nсв = 24 шт.

При размещении светильников учитываем требования качества освещения, в частности направление света, а так же доступность их для обслуживания. Расположение светильников в цехе производим в соответствии с рисунком 2.

 



Рисунок 2 – расположение светильников в пролёте

Число пролетов в цехе i = 4 (по заданию)

Мощность рабочего освещения производственных помещений цеха Pp.о, кВт

Pp.о = Nсв х Рл х i = 24 х 400 х 4 = 38400 Вт = 38,4 кВт (5)

В случае отключения рабочего освещения для продолжения работы предприятия предусматривается аварийное освещение. Мощность аварийного освещения производственных помещений цеха Рав., Вт принимают 10% (0,1) от рабочего освещения.

Рав. = 0,1 × 38,4 = 5,76 кВт

Для аварийного освещения выбираем лампы накаливания типа Г, мощностью 500 Вт с теми же светильниками. [1]

Таблица 2 Технические данные лампы аварийного освещения

Тип лампы Светильник

Рн., Вт

Uл., В

Ф, Лм Размер лампы, мм
D L H
Г УПД 500 220 8300 112 240 180

Мощность освещения бытовых помещений Рбп, кВт определяем по формуле:

Рбп = Руд.бп ´ Sбп (6)

Согласно задания: Руд.бп = 25 Вт/м2; Sбп = 6 ´ 36 = 216 м2

Рбп = 25 ´ 216 = 5400 Вт = 5,4 кВт

Общая мощность электроосвещения цеха Росв, кВт

Росв = Рро + Рбп = 38,4 + 5,4 = 43,8 кВт


1.3.2 Расчёт электрических нагрузок

Расчет ведем методом упорядоченных диаграмм, по максимальной мощности, потребляемой цехом в течение первой 30 минутной наиболее загруженной смены.

Этот метод учитывает режим работы приемников, отличие их друг от друга по мощности и их количество.

В каждом пролете устанавливается по два ШРА на стойках или кронштейнах вдоль электроприемников.

Мощности электроприемников, работающих в ПКР, приводим к ПВ = 100% и выражаем в кВт.

Пример расчета: [2]

1 Номинальная мощность, приведенная к ПВ = 100%, Рн.пв = 100%, кВт

а) МРС, насосы, вентиляторы, печи сопротивления, индукционные печи

Рн.ПВ =100% =Рн

б) Сварочные машины точечные, U = 380В, cos j = 0,7, ПВ = 20%(0,2)

Рн.пв = 100%= Sн x x cos j.             (7)

Sн=100кВА,                

Суммарная мощность

в) Электродвигатели кранов G = 10 т

Рн1= 11 кВт; Рн2= 2,2 кВт; Рн3= 16 кВт; ПВ = 25% (0,25)

Рн.ПВ = 100% = Рн х ÖПВ                         (8)

Где Рн – номинальная суммарная мощность всех электродвигателей крана, кВт

Рн= Р1+ Р2 + Р3 =11 + 2,2 + 16=29,2 кВт

Рн.пв = 100% = 29,2 х 0,5 = 14,1 кВт

2 Для всех электроприемников определяется cosj и соответственно tgj [2]

3 Сменная активная мощность за наиболее загруженную смену Рсм, кВт

Рсм = Ки х Рн,                                       (9)

Где Ки – коэффициент использования электроприемников. Для точечных сварочных машин Ки = 0,2;

Рсм= 62,6 х 0,2 = 12,52 кВт.

4 Сменная реактивная мощность Qсм, кВА

Qсм = Рcм х tg j.                                  (10)

Для точечных сварочных машин tg j = 1,33; Q см = 12,52 х 1,33 = 16,65 кВА.

5 Расчет максимальной нагрузки

5.1 Определяем показатель силовой сборки для группы приемников, m

,                                           (11)

где Рн мах – номинальная мощность наибольшего электроприемника в группе, кВт;

Рн.мin – номинальная мощность наименьшего электроприемника в группе, кВт

Для сварочных точечных машин Рн мах = 31,3 кВт; Р н.мin = 31,3 кВт;

.

Для МРС Рн мах = 30 кВт; Р н.мin = 13 кВт;

5.2 Определяем эффективное число электроприемников nэ, по формуле

nэ=n*э х n,                                           (12)

где n*э – относительное эффективное число электроприемников;

n – общее количество приемников, подключенных к силовому проводу.

n*э= f (n*; Р*),

где n* – относительное число наибольших по мощности электроприемников

,                                               (13)

где n' – число приемников с единичной мощностью больше или равной

К 6 ШРА подключено 11 электроприемников, n=11. Максимальная мощность единичного электроприемника Рн макс = 31,3 кВт, отсюда

Число приемников с Рн ³ 15,65 кВт,

n' = 8 шт.

Суммарная мощность этих электроприемников Рн = 200,6 кВт.

Относительное эффективное число n* электроприемников

Относительная мощность наибольших электроприемников Р* в группе

.

Для n* = 0,73 и Р* = 0,84 n*Э = 0,9 [2]

nэ = n* Э х n = 0,9 х 11 =9,9.

Аналогично определяется эффективное число и для остальных ШРА.

6 Коэффициент максимума Км = f (n; Ки), [2]

Где Ки – средний групповой коэффициент использования электроприемников

.                                                                          (14)

Для 6 ШРА ; Км= f (nэ = 9,9; Ки = 0,2)= 1,84

7 Максимальная активная мощность Рм, кВт

Рм = Км х Рсм.                                     (15)

Для 6 ШРА Рм = 1,84 х49,54 = 91,2 кВт

8 Максимальная реактивная мощность Qm, кВА

Qm = Рм х tg j.                                   (16)

Для 6 ШРА   Qм = 91,2 х 1,14 = 103,9 кВА

9 Полная максимальная мощность Sм, кВА

Sм = ÖPм2 + Qм2.                                 (17)

Для 6 ШРА         

10 Максимальный ток нагрузки


.         (18)

Для 6 ШРА

Максимальные расчетные нагрузки для других ШРА рассчитываются так же, как и для 6 ШРА. Итоговая нагрузка силовых пунктов 6 ШРА и 5 ШРА определяется по вышеприведенным формулам согласно методу коэффициента максимума.

По аналогии ведется расчет и по другим пролетам.

1.4 Определение мощности и выбор типа компенсирующего устройства

Повышение cos j электроустановок имеет большое значение, так как прохождение в электрических сетях реактивных токов обуславливает добавочные потери напряжения, активной мощности, а следовательно и электроэнергии. При этом снижается пропускная способность линии. При выборе компенсирующих устройств подтверждается необходимость их комплексного использования как для повышения напряжения, так и для компенсации реактивной мощности

Коэффициент мощности по расчётным нагрузкам cosjшма1 = 0,66 и cosjшма2 = 0,78 (таблица 3), а согласно ПУЭ нормативный допустимый для данных предприятий cosj = 0,95. [3]

Для повышения cosj в электроустановках промышленных предприятий используют два способа: естественный и искусственный.

К естественному методу относятся следующие мероприятия:

·  при работе асинхронного двигателя на холостом ходу cosjх.х. = 0,1 – 0,3, поэтому применяют устройства, ограничивающие работу на холостом ходу;

·  замена малозагруженных двигателей на двигатели с меньшей мощностью;

·  если два трансформатора загружены в среднем менее чем на 30%, то один из них следует отключить;

·  там где есть возможность использовать синхронные двигатели вместо асинхронных, у них cosj больше;

·  производить качественный ремонт двигателей.

К искусственному методу относятся следующие устройства:

·  статические конденсаторы;

·  синхронные компенсаторы;

·  перевозбужденные синхронные двигатели;

·  тиристорные источники реактивной мощности (ТИРМы).

Компенсация реактивной мощности на предприятиях осуществляется в основном с помощью статических конденсаторов.

В проектируемом цеху осуществляем групповую компенсацию реактивной мощности. Для этого выбранные ККУ подключаем через ящик с автоматом к ШМА.

Мощность комплектной компенсаторной установки Qкку, кВАр определяется по формуле:

Qкку = Pм. ´ (tgj1 – tgj2).                    (19)

Рм1 = 311кВт; tgj1 = 1,13 (таблица 3); tgj2 = 0,33, находим по cosj2 = 0,95.

Qкку1 =311´ (1,13 – 0,33) = 249 кВАр.

Рм2. = 449кВт; tgj1 = 0,82 (таблица 3); tgj2 = 0,33, находим по cosj2 = 0,95

Qкку2 = 293,2 ´ (0,79 – 0,33) = 135 кВАр

Принимаем к установке две ККУ типов: УКН – 0,38 – I‑280 и ККУ – 0,38 – I‑160 [4], суммарное Qкку = 440 кВАр, присоединяемые к магистральным шинопроводам двумя проводами марки АПВ7 (3´95) и АПВ7 (3 ´ 50). [2]

Iдоп. ³ Iм. = .                               (20)

УКН – 0,38 – I‑280: АПВ7 (3 ´ 95).

Iдоп1 = 3 ´ 165 = 495 А > Iм1 =  = 425 А.

ККУ – 0,38 – I‑160: АПВ (3 ´ 50).

Iдоп2 = 3 ´ 105= 315 А > Iм2 =  = 243А.

В качестве защитной аппаратуры ККУ принимаем автоматические выключатели типа А3724Б и А3744Б . [5]

УКН – 0,38 – I‑280: А3744Б.

Iн.т.расц1 = 500 А > Iм1 = 425 А.

Iн.авт1 = 630 А > Iм1 = 425 А.

Iн.эл.маг1 = 6000 А > 1,5 ´ Iм1 = 1,5 ´ 425 = 637,5 А.

ККУ – 0,38 – I‑160: А3724Б.

Iн.т.расц2 = 250А > Iм2 = 243А.

Iн.авт2 = 250А > Iм2 = 243А.

Iн.эл.маг2 = 4000 А > 1,5 ´ Iм2 = 1,5 ´ 243 = 364,5А.

Рассчитываем оптимальное место размещения ККУ

Lопт. = L0 + (1 – ) ´ L, м (21)


где L0, м – длина магистрали от трансформатора КТП до того места, откуда начинается подключение к ней распределительных шинопроводов;

L, м – длина участка магистрального шинопровода от начала ответвления ШРА до конца;

Q – суммарная реактивная мощность шинопровода, кВАр

НА ШМА – 1 Lопт. = 6 + (1 – ) ´ 26 = 18,8 м.

НА ШМА – 2 Lопт. = 5 + (1 – ) ´ 14 = 13,5 м.

1.5 Определение числа и мощности цеховых трансформаторных подстанций и их типа

В настоящее время широкое применение получили комплектные трансформаторные подстанции КТП, КНТП. Применение КТП позволяет значительно сократить монтажные и ремонтные работы, обеспечивает безопасность и надёжность в эксплуатации.

Выбор типа, числа и схем питания трансформаторов подстанции обусловлен величиной и характером электрических нагрузок, размещением нагрузок на генеральном плане предприятия, а также производственными, архитектурно-строительными и эксплуатационными требованиями, учитывая конфигурацию производственного помещения, расположение технологического оборудования, условия окружающей среды, условия охлаждения, требования пожарной и электрической безопасности и типы применяемого оборудования.

Расчётная мощность нагрузки с учётом компенсации реактивной мощности Sм.', кВА определяется по формуле:

Sм.' = . (22)


Sм.' =  = 617 кВА.

Исходя из расчётной мощности, перечисленных условий, учитывая, что потребители электроэнергии цеха относятся ко II и III категории по бесперебойности электроснабжения, принимаем к установке КТП с двумя трансформаторами типа ТМЗ 1000/10/0,4 (лист 4 графической части) [4]

Таблица 4 Технические данные трансформатора

Тип

Sн.

U1

U2

uк.з.

iх.х.

Рх.х.

Рк.з.

Габарит Масса
кВА кВ кВ %, % кВт кВт мм т

ТМЗ

1000 10 0,4 5,5 1,4 2,45 12,2 2700´1750´3000 5

Коэффициент загрузки трансформаторов в нормальном режиме Кз., %:

Кз. =  ´ 100% (23)

Кз. =  ´ 100% = 60%

В аварийном режиме загрузка одного трансформатора Кз. ав., % составит:

Кз.ав. =  ´ 100% (24)

Кз.ав. =  ´ 100% = 120%

Согласно ПУЭ, аварийной загрузки для КТП с трансформаторами типа коэффициент ТМЗ должен составлять не более 30%, если его коэффициент загрузки в нормальном режиме не превышал 70 – 75% и, причем с этой перегрузкой он может работать не более 120 минут при полном использовании всех устройств охлаждения трансформаторов, если подобная перегрузка не запрещена инструкциями заводов изготовителей. Так как электроприемники в цехе относятся ко 2 и 3 группе по бесперебойности электроснабжения, то в аварийном режиме возможно отключение части неответственных электроприемников.

Для выбранной КТП ТМЗ 1000/10/0,4 имеется большой трансформаторный резерв, что обеспечит дальнейший рост нагрузки цеха без замены трансформатора на большую мощность, во вторую смену можно отключить один трансформатор для экономии электроэнергии.

1.6 Расчет и выбор силовой (осветительной) сети на стороне 0,4 кВ

1.6.1 Выбор магистральных шинопроводов ШМА [4]

Магистральный шинопровод выбирается по номинальному току трансформатора.

Номинальный ток трансформатора Iн.тр., А

Iн.тр. =  (25)

Iн.тр. =  = 1519А

Принимаем к установке два магистральных шинопровода типа ШМА‑4–1600–44–1У3. [2]

Iн.шма ³ Iн.тр.

1600А > 1519А.


Таблица 5 Технические данные магистрального шинопровода
Тип

Iн.шма

Uн.

xo

ro

Динамическая

стойкость

Сечение

шины

А В Ом/км Ом/км кА мм
ШМА‑4–1600–44–1У3 1600 660 0,17 0,031 70 1280

1.6.2 Выбор распределительных шинопроводов ШРА [2]

Принимаем к установке четырёхполюсные распределительные шинопроводы типа ШРА‑4. Выбираем их по максимальному расчётному току (таблица 3).

Iн.шра ³ Iм.

Пример выбора 1ШРА, Iм. = 157 А:

Принимаем к установке шинопровод ШРА‑4–250–32–1УЗ, I н.шра = 250А.

250А ³ 157А.

Выбор остальных ШРА производим аналогично. Данные выбора приведены в таблице 6.

Таблица 6 Данные выбора ШРА
№ШРА

Iм., А

Тип ШРА

Iн.шра., А

Сечение шин, мм
М1–1ШРА 157 ШРА‑4–250–32–1УЗ 250 А4 (5´35)
М1–2ШРА 210 ШРА‑4–250–32–1УЗ 250 А4 (5´35)
М1–3ШРА 149 ШРА‑4–250–32–1УЗ 250 А4 (5´35)
М1–4ШРА 149 ШРА‑4–250–32–1УЗ 250 А4 (5´35)
М2–5ШРА 254 ШРА‑4–400–32–1УЗ 400 А4 (5´50)
М2–6ШРА 254 ШРА‑4–400–32–1УЗ 400 А4 (5´50)
М2–7ШРА 197 ШРА‑4–250–32–1УЗ 250 А4 (5´35)
М2–8ШРА 197 ШРА‑4–250–32–1УЗ 250 А4 (5´35)

Страницы: 1, 2, 3, 4, 5


© 2010 Реферат Live