Рефераты

Дипломная работа: Модернизация электроснабжения системы электропривода подъемной установки ствола СС-3 рудника "Таймырский"

при пробое отдельных соединенных последовательно секций конденсатора номинальный ток плавкой вставки предохранителя не должен значительно превышать номинальный ток конденсатора.

6.17. Потери в кабелях связанные с низким коэффициентом мощности

Принимаем начальный cosj=0,7; с учетом компенсации cosj=0,95.

Потери учитываем только в кабельной линии от ГПП-33 до РП-365, т.к. коэффициент мощности увеличивается только до места установки компенсирующих устройств.

Сопротивление кабеля ААБлГ-4(3х185), l=707м от ГПП-33 до РП-365

Рабочий ток при cosj=0,8

Рабочий ток при cosj=0,95

Потери активной энергии при cosj=0,7

Потери активной энергии при cosj=0,95

Разность потерь активной энергии за год

6.18. Добавочные потери от высших гармоник в электрических машинах

Потери в электрических машинах. При работе синхронных и асинхронных двигателей в условиях несинусоидального напряжения возникают добавочные потери мощности, обусловленные высшими временными гармониками тока в цепях статора и ротора. Появляются также добавочные потери в стали статора и ротора; однако эти потери малы и ими можно пренебречь. Основная часть добавочных потерь от гармоник в синхронных машинах приходится на долю демпферной клетки и обмотки статора; потери в обмотке ротора, как правило, оказываются меньшими. В асинхронных двигателях высокого напряжения потери в статоре и роторе примерно одинаковы.

Оценка величин потерь от высших временных гармоник в синхронных двигателях производим по кривым рис.3-6. [7], на которых представлены отношения этих потерь DРДn при напряжении, равном одному проценту напряжения основной частоты, к суммарным номинальным потерям DРном.

Удельные потери для одной гармоники будут различными в зависимости от того, какую последовательность образует система векторов напряжения этой гармоники, поскольку различной оказывается частота токов в роторе и демпферной системе. Используем средние значения удельных потерь, рассчитанных для случая прямого и обратного следования фаз векторов напряжения гармоник.

Для СД компрессорной станции

Суммарные потери DРSn, % определяемые всеми гармониками напряжения

, (6.29)

для СД DРном=0,003Рном=0,003*3200*8=81,6кВт

по кривым рис. 3-6. [7] определяем отношения:

%;

%;

.

Для трансформаторов подъемных машин КС-3.

Потери активной мощности от токов высших гармоник в трансформаторах выражаются формулой

, (6.30)

где InТ —ток n-й гармоники, протекающий через трансформатор; rт - сопротивление трансформатора при промышленной частоте; кnТ - коэффициент, учитывающий увеличение сопротивления короткого замы­кания для высших гармоник вследствие влияния поверхностного эффекта и эффекта близости. Для силовых трансформаторов можно принять к11=3,2 и к13=3,7.

Для трансформаторов ТП-365, ТП-363, ТП-312, ТП-309:

, (6.31)

по табл. 27.6. [1] принимаем DРм=DРх.х.+DРк.з.

Ом

6.19. Управление и регулирование батарей конденсаторов и СРФ

Необходимо четко разграничивать понятия автоматического управления и автоматического регулирования БК. При автоматическом управлении в качестве задающего органа на входе цепи управления может использоваться измерительный орган, например реле, реагирующий на электрическую величину. При достижении электрической величиной уставки срабатывания измерительного органа последний воздействует на коммутирующий аппарат, включающий в работу БК. Если ее включение не ока­зывает существенного влияния на измеряемую изме­рительным органом электрическую величину, то обратного действия от изменения режима сети на вход цепи управления не происходит. Направление воздействий проходит по “открытой” цепи управления. Подобное управление режимом БК может осуществляться в том случае, когда вопрос о ее работе решается двояко: либо включена, либо отключена. Отключение БК происходит при снижении измеряемой электрической величины до уставки возврата измерительного органа. Таким образом, вопрос может решаться лишь в том случае, если приходится иметь дело с односекционной установкой.

В случае многосекционной установки мощность последней изменяется многократно во времени в соответствии с требованием режима узла электрической сети. Предположим, что в результате роста нагрузок узла электрической сети (возмущающее воздействие) возникают отклонения регулируемого параметра от заданного и для восстановления регулируемой величины до заданного значения необходимо включить в работу одну секцию БК. Зафиксированное измерительным органом автоматического регулятора отклонение параметра сопровождается появлением регулирующего воздействия, которое приводит к включению коммутирующего аппарата первой секции. После этого параметр восстанавливается до желательного уровня. Это фиксируется измерительным органом регулятора, который прекращает дальнейшую посылку сигнала на увеличение мощности БК. Если в дальнейшем в связи с ростом нагрузки величина Q дополнительно изменится, то регулятор может повторно послать регулирующее воздействие на дополнительное увеличение мощности БК. При изменении регулируемого параметра в обратную сторону будет послан импульс на уменьшение мощности БК. Здесь после приведения в действие измерительного органа регулятора воздействие проходит от звена к звену, к “регулируемой величине”. В результате образуется замкнутая цепь регулирования, действующая до наступления установившегося состояния. Регулятор путем сравнения заданного значения регулируемой величины, получаемого от задающего органа, и фактического ее значения производит измерение отклонения регулируемой величины и соответственно воздействует на объект. Регулятор прекращает свое действие после полного исчерпания регулирующего диапазона, так как после включения всех секций дополнительное увеличение мощности БК невозможно (аналогично уменьшение мощности БК после отключения всех секций).

Сравнивая приведенные примеры можно определить автоматическое управление как управление по незамкнутой схеме, а автоматическое регулирование — как управление по замкнутой схеме. От того, осуществляется ли управление по разомкнутой или замкнутой схеме, зависит выбор параметров регулирования. При замкнутой схеме в качестве параметра регулирования можно использовать комбинацию лишь таких величин, которые существенно изменяются с изменением режима БК, к примеру, напряжение сети в сочетании с напряжением, пропорциональным реактивной составляющей тока питающего участка сети. Регулирование режима БК по замкнутой схеме должно применяться для многосекционных батарей. При управлении по разомкнутой схеме односекционной установкой не требуется автоматического регулятора. В этом случае можно использовать реле управления, реагирующее на любой параметр режима электрической сети, даже практически не изменяющийся в результате включения или отключения БК. В качестве такого параметра может быть использовано напряжение или ток элемента электрической сети. К устройствам, действующим по разомкнутой схеме, относятся также временные программные устройства, циркулярная система телеуправления и т. п.

С учетом выше сказанного для четырех секционной батареи конденсаторов применим схему автоматического регулирования в функции тока нагрузки с применением бесконтактных элементов, показанную на чертеже.

Определим ступень регулирования Q.

Максимальные ступени увеличения напряжения при включении конденсаторной установки во избежание резких колебаний напряжения не должны превышать 1-2% номинального напряжения сети. Регулирующий эффект при включении одной секции конденсаторной установки определим по формуле:

, (6.31)

где Хс – реактивное сопротивление элементов сети, ближайших к установке.

DU%=%

Регулируемыми делаем все секции БК.

Зона нечувствительности регулирования режима БК.

Включение и отключение секций БК осуществляется при несколько отличающихся параметрах, поступающих на измерительный орган U1 и U2. Разность этих параметров

DU=çU1-U2ï

определяет нечувствительность регулирования, которая должна превосходить изменение результирующего напряжения на измерительном органе, наблюдающееся при включении и отключении секции БК.

Если контролируется активный ток или независимый реактивный ток, то включение и отключение секции не сопровождаются изменением тока. Напряжение в этих случаях является единственно изменяющейся величиной и зона нечувствительности может быть небольшой.

Погрешность, связанная с изменением уставки регуляторов по напряжению, по относительному значению меняется в соответствии с изменением этой уставки. Обычно предельное значение изменения уставки по напряжению составляет 10%, что гораздо больше 0,9% повышения напряжения вследствии включения 1 секции БК.

6.20. Принципиальная схема автоматического регулирования в функции тока нагрузки секциями БК

В схеме автоматического регулирования датчиком является индуктивная катушка L, состоящая из провода, намотанного на сердечник, состоящий из пластин прямоугольной формы. Катушка расположена в непосредственной близости от одной из шин. Схема работает следующим образом.

При прохождении тока нагрузки по шине в катушке L наводится ЭДС. Переменное напряжение, выпрямленное мостом, состоящим из четырех диодов VD1-VD4 подается на конденсатор С1, служащий фильтром, и С2, который заряжается через потенциометр R1, осуществляющий регулировку времени заряда.

Напряжение с этого конденсатора подается на делители напряжения, число которых соответствует количеству регулируемых секций БК. Делитель напряжения состоит из двух резисторов R2 и R4 и одного потенциометра R3, которым регулируется напряжение, подаваемое на базу каждого из транзисторов, VT1,VT3,VT5 и VT7.

Если ток нагрузки невелик, то напряжение на конденсаре С2 тоже будет незначительно. В этом случае транзисторы VT1,VT3,VT5 и VT7 будут закрыты, так как напряжение на стабилитроне VD9 будет приложено к базам этих транзисторов через резистор R5 и делитель R3 и R4.При этом транзисторы VT2,VT4,VT6 и VT8 будут открыты и катушки реле К1,К2,К3 и К4 будут притянуты. При возрастании тока нагрузки напряжение на конденсаторе С2 также будет возрастать с задержкой по времени, определяемой постоянной времени цепочки R1С2. Когда напряжение на конденсаторе достигнет определенного значения, напряжение, подаваемое с делителя R2-RЗ-R4 на базу транзисторов VT1,VT3,VT5 и VT7, становится достаточным для их открытия, что соответственно вызывает закрытие транзисторов VT2,VT4,VT6 и VT8 с последующим отключением катушек реле К1,К2,К3 и К4 в цепях коллекторов этих транзисторов. Напряжение, сравнения в данной схеме можно плавно регулировать потенциометром делителя. Реле К1,К2,К3 и К4 размыкающими контактами соответственно включают катушки промежуточных реле К5,К6,К7 и К8 контакты которых включают включающие катушки вакуумных выключателей секций БК— К13,К14,К15 и К16.

При уменьшении тока нагрузки напряжение на конденсаторе С2 также будет снижаться с задержкой по времени, определяемой постоянной времени разряда С2. Когда напряжение на конденсаторе достигнет определенного значения, напряжение, подаваемое с делителя R2-RЗ-R4 на базу транзисторов VT1,VT3,VT5 и VT7, становится минимальным для их закрытия, что соответственно вызывает открытие транзисторов VT2,VT4,VT6 и VT8 с последующим включением катушек реле К1,К2,К3 и К4 в цепях коллекторов этих транзисторов. Реле К1,К2,К3 и К4 замыкающими контактами соответственно включают катушки промежуточных реле К9,К10,К11 и К12 контакты которых включают отключающие катушки вакуумных выключателей секций БК— К17,К18,К19 и К20.

В цепи отключающих катушек вакуумных выключателей включены четыре выключателя SB1,SB2,SB3,SB4 для ручного отключения на случай ревизии или ремонта БК. Транзистор VТ9 в схеме служит для стабилизации напряжения.

Данная схема показала себя надежной в работе, состоит из серийных элементов и проста в обслуживании.

6.21. Управление батареями конденсаторов в аварийных режимах

Наравне с управлением местными источниками реактивной мощности в нормальных режимах работы актуальна проблема управления ими в аварийных режимах, когда возникают глубокие снижения напряжения вследствие коротких замыканий с последующими затрудненными самозапусками двигателей технологического оборудования, а также явления “лавины напряжения” в узлах энергосистемы и нагрузочных узлах.

Воздействие на режим БК при переходных процессах в электрической системе нежелательно, так как это может привести к большому числу лишних коммутационных операций, а, следовательно, к преждевременному износу коммутационной аппаратуры. Поэтому нецелесообразно воздействовать на БК в случаях снижения напряжения, когда короткие замыкания отключаются без последствий для работы технологического оборудования.

Управление БК в аварийных ситуациях может быть двояким. Поскольку часть секций многосекционных БК в некоторых режимах сети находится в отключенном состоянии, целесообразно осуществлять включение этих секций при авариях. Такое включение можно производить по сигналу прибора, выявляющего глубокое снижение напряжения, с небольшой выдержкой временя во избежание чрезмерно частого включения бк. Если короткое замыкание отключается в пределах этого времени и напряжение восстанавливается, то посылка сигнала на включение секций БК не производится. Если же после отключения короткого замыкания сохраняется глубокое снижение напряжения, что является показателем затяжного самозапуска двигателей технологического оборудования или нарушения устойчивости узла нагрузки, то включаются все отключенные секции.

Следует, однако, учитывать, что повышение напряжения за счет включения отключенных секций БК является в ряде случаев незначительным. Усложнение же автоматической аппаратуры, предусматривающей аварийное включение всех секций, оказывается существенным. Поэтому такая возможность должна предусматриваться только для крупных БК системного значения.

Для северной подъемной машины СРФ подключаем без регулирования, т.к. коэффициент несинусоидальности в течение всех суток больше нормированного значения.

Для СРФ южной подъемной машины применим схему автоматического управления в функции времени суток. В качестве датчиков при таком регулировании используются электрические втроричные сигнальные часы типа ЭВЧС-24, имеющие 24-часовую программу переключений СРФ.

6.22. Принципиальная схема автоматического управления СРФ

Принцип работы схемы заключается в следующем.

В течении 1-ой и 2-ой смены работы предприятия коэффициент несинусоидальности находится в пределах нормируемого значения и в 3 смену повышается выше допустимого значения. В начале третьей смены в 16 часов необходимо включить все СРФ. В этом случае замыкается контакт электрических часов К1.1, К1.3, К1.5 и все три включающие катушки К2,К4,К6 с выдержкой времени через соответствующие реле времени КТ1,КТ3,КТ5 получают питание, которые в свою очередь подают питание на включающие катушки вакуумных выключателей. В 24 часа размыкаются контакты К1.1, К1.3, К1.5 и включаются контакты К1.2, К1.4, К1.6 и все три отключающие катушки К3,К5,К7 с выдержкой времени через соответствующие реле времени КТ2,КТ4,КТ6 получают питание, которые в свою очередь подают питание на отключающие катушки вакуумных выключателей.

В схеме предусмотрено ручное управление с помощью включающих SB2,SB4,SB6 и отключающих SB3,SB5,SB7 кнопок.

6.23. Контроль за потреблением реактивной мощности

При известном потреблении реактивной энергии за Д дней в целом  и отдельно за ночные  и вечерние  смены значение  - фактическое значение минимальной потребляемой реактивной мощности определяется по формуле

, (6.32)

tд — продолжительность дневного периода суток.

Ввиду того что величины и  неизвестны, принимаем следующие допущения:

1)  средняя за все ночные смены реактивная мощность приблизительно равна ее среднему значению за часы максимальных нагрузок системы;

 , (6.33)

2) отношение / приблизительно равно отношению по­требления активной мощности в те же периоды (последнее считает­ся известным):

, (6.34)

В случае, когда КУ работают в течение ночной и вечерней смен, что характерно для двух- и трехсменных предприятий, показания счетчиков, соответствующие естественным нагрузкам (без КУ), могут быть определены добавлением к фактическим показаниям величин  и  соответственно.

Для этих скорректированных показаний условие 2) будет соблюдаться, т. е.

, (6.35)

при  , (6.36)

, (6.37)

при  , (6.38)

при семидневной рабочей неделе (=1,2), , l=0,7, Кq=1

, (6.39)

;

В дневную смену рекомендуется отключать некоторые секции БК.

Для контроля за фактическим потреблением Q на шинах ГПП-33 по табл. 18.4. [3] намечаем к применению счетчик реактивной мощности тип: СР4-И689, класс точности 1,5 , подключение через трансформаторы тока и напряжения.

Включение в трехпроводную цепь.

Iном.первич.=5кА, Iном.вторич.=5А,

Uном.первич.=6кВ, Uном.вторич.=100кВ.

Выбор трансформатора тока:

По табл.31.9. [1] выбираем тип: ТПШЛ-10УЗ, Iном=4кА, класс точности=0,5,

Электродинамическая стойкость – кратность=20,

Термическая стойкость 35кА/3с.

Проверка на динамическую устойчивость ;

20кА>6,7кА

Кратность односекундного тока термической стойкости:

;

Выбор трансформатора напряжения.

По табл.31.13.[1] выбираем тип: НОМ-6-У4, Uвторич.=100В, класс точности=0,5, номинальная мощность 50ВА.


7. Обслуживание, ремонт и наладка энергетического оборудования и средств автоматизации

Конденсаторные установки должны удовлетворять требованиям ПУЭ [2], .которые распространяются на установки напряжением до 220 кВ, присоединяемые параллельно индуктивным элементам электрических систем переменного тока частотой 50 Гц (установки для поперечной компенсации). К наиболее существенным особенностям электрооборудования, влияющим на компоновку конденсаторных установок, относится форма его исполнения, определяющая, для каких условий эксплуатации это оборудование предназначено: в закрытом помещении или на открытом воздухе. Имеет также значение, является ли конденсаторная установка комплектной или выполняется из отдельных элементов.

Расположение установки на генплане оказывает влияние на компоновку в зависимости от того, устанавливается ли она совместно с другим оборудованием в одном помещении или отдельно. Если компоновка позволяет заменить кабельные связи шинными — это, как правило, приводит к повышению надежности.

Приближение конденсаторной установки к потребителю реактивной мощности, совмещение в общем помещении конденсаторной установки с другим электрооборудованием экономически выгодно.

Конструкция каркаса конденсаторных ячеек должна обеспечивать хорошую обозреваемость конденсаторов, изоляторов, предохранителей и другого оборудования при осмотре их под напряжением. К конденсаторам, предохранителям и контактам шин должен быть свободный доступ во время производства ремонта при снятом напряжении, а также возможность свободной замены конденсаторов и предохранителей без разборки всей ячейки. Конденсаторные установки выпускаются как для одностороннего, так и для двустороннего обслуживания. Для внутренних установок предпочтительно применение конденсаторных установок с односторонним обслуживанием. Для удобства эксплуатации конденсаторных установок при снятии и установке конденсаторов массой 60— 100кг желательно комплектно с конденсаторной установкой иметь рычажное или простое передвижное подъемное устройство. В предназначенных для установки конденсаторов помещениях устройство окон и отопление не требуются. Следует учитывать, что для северных районов при применении конденсаторов с синтетическим диэлектриком (соволом), который допускает работу при температуре не ниже —10 °С, устанавливать конденсаторные установки необходимо только в закрытых помещениях, где поддерживается температура не ниже —10 °С. В южных районах конденсаторные установки необходимо располагать по возможности с северной стороны здания. Конденсаторные установки можно устанавливать и на открытом воздухе.

При разработке узлов и отдельных элементов конденсаторных установок должны учитываться следующие требования:

конструкции должны обеспечивать необходимую степень надежности и быть удобными в монтаже и эксплуатации;

они должны выдерживать без повреждения усилия, которые могут возникать как в период эксплуатации, например при коротком замыкании, так и при транспортировке. Последнее особенно следует учитывать при крупноблочных электроконструкциях.

Конденсаторы работают со сравнительно высокими напряженностями поля в диэлектрике. Совместное действие этих напряженностей и высокой рабочей температуры приводит к сокращению срока службы конденсаторов. Поэтому вентиляция конденсаторных установок должна обеспечивать хорошую циркуляцию воздуха вокруг каждого конденсатора. Большое значение это имеет для конденсаторов, которые установлены в несколько ярусов один над другим. Для обеспечения хорошей вентиляции следует избегать горизонтальных межъярусных перегородок. При этом необходимо учитывать определенные расстояния между соседними конденсаторами и окружающими стенками, для того чтобы можно было всю поверхность конденсатора полностью использовать для отвода тепла.

Помещения, где устанавливаются конденсаторные установки, должны иметь естественную вентиляцию; если последняя не обеспечивает снижения температуры воздуха в помещении до уровня максимально допустимой, необходимо применять искусственную вентиляцию. Температура окружающего воздуха в помещении конденсаторных установок не должна превышать 35 °С.

Конденсаторные установки не допускается устанавливать в цехах с насыщенной токопроводящей пылью, с химически активной и взрывоопасной средой, а также в цехах, где конденсаторы могут подвергаться постоянным сотрясениям, вибрациям и ударам. При размещении конденсаторных установок в отдельном помещении для защиты от случайных прикосновений, к частям оборудования, находящимся под напряжением, должно предусматриваться сетчатое ограждение высотой не менее 1,7м от пола. При установке же в производственных помещениях могут предусматриваться сплошные ограждения из листовой стали с отверстиями для вентиляции. Корпуса (баки) конденсаторов, металлические конструкции, на которых они стоят, сетчатые ограждения, и другие нетоковедущие части конструкции конденсаторной установки должны быть заземлены и присоединены к общему контуру заземления подстанции, цеха. В ячейке ввода конденсаторной установки должны быть предусмотрены зажимы для присоединения переносных заземляющих устройств.

Конденсаторные установки (если их установлено две или несколько рядом или в одном помещении) с общей массой масла более 600кг должны быть расположены в отдельном помещении с выходом наружу или в общее помещение I и II степеней огнестойкости по пожарным требованиям, при этом под конденсаторной установкой напряжением выше 1 000 В должен быть устроен маслоприемник, рассчитанный, на 20% общей массы масла, содержащегося во всех конденсаторах.


8. Экономическая часть

8.1. Экономическая эффективность применения компенсирующих устройств и СРФ.

Капитальные затраты на установку оборудования компенсирующих устройств и СРФ.

Стоимость батарей конденсаторов:

по табл.16-19. [6] принимаем стоимость 1кВАр=2,15 у.е.

ЦБК=2,15*1800=3870 у.е.

Стоимость коммутационной аппаратуры:

4 вакуумных выключателя Ц=4*161=644 у.е.

4 разъеденителя Ц=4*16,5=66 у.е.

Стоимость батарей конденсаторов СРФ и реакторов:

ЦБК=2,15*7800=16770 у.е.

ЦР=1720*18=30960 у.е.

Стоимость коммутационной аппаратуры для СРФ:

6 вакуумных выключателя Ц=6*161=966 у.е.

4 разъеденителя Ц=6*16,5=99 у.е.

Потери активной энергии в конденсаторах БК и СРФ:

DРБК=DР*5000*С,

где С=0,009 у.е. за 1 квт*ч

DРБК=5,4*103*3000*0,009=150 у.е.

DРСРФ=23,4*103*3000*0,009=630 у.е.

Потери активной энергии в реакторах СРФ:

DРСРФ=6,5*103*18*3000*0,009=3000 у.е.

Затраты, связанные с проектированием и эксплуатацией компенсирующих устройств.

Приведенные затраты, связанные с проектированием и эксплуатацией КУ, могут быть записаны в виде

Зк=Гк+рНКк, (8.1)

где Гк—годовые эксплуатационные расходы; Кк—сметная стоимость КУ, т. е. капитальные затраты на их установку; рН — нормативный коэффициент эффективности капитальных затрат.

На стадии проектных проработок обычно пользуются укрупненными технико-экономическими показателями. В данном случае капитальные затраты и годовые эксплуатационные расходы удобнее представлять в функции удельных капитальных затрат kу.к и установленной мощности КУ Qк. При этих условиях можно записать   |

Кк= kу.кQк, (8.2)

Гк=ркkу.кQк+ Dру.кQкТк.максb, (8.3)

где рк — отчисления на амортизацию, текущий ремонт и обслуживание КУ; Dру.к — удельные потери мощности в КУ; Тк. макс — время использования максимальной мощности КУ; b — стоимость 1 кВт • ч потерянной энергии.

Принимаем kу.к=1, рН =1,1, рк=0,01Кк, kу.к=2,15 у.е./кВАр, Dру.к=0,003 кВт/кВАр, Т=3000ч., b=0,009 у.е./кВт

Кк=ЦБК+Цкомм.апп=3870+710=4580 у.е.

Зк=4580*0,1*2,15*1800+0,003*1800*3000*0,009+1,1*4580=1777644 у.е

Экономическая эффективность минимизации уровня гармоник.

Оценка экономической эффективности минимизации гармоник основывается на формуле приведенных затрат

З=рКосн+Ин, (8.4)

где Косн — единовременные капитальные вложения; Ин — ежегодные издержки производства; р — нормативный коэффициент эффективности капитальных вложений.

Для сравниваемых вариантов в формулу входят лишь составляющие, которые обусловлены наличи­ем гармоник или средств, минимизирующих уровни их, с учетом дополнительного эффекта, обусловленного минимизацией.

Ежегодные. издержки производства в рассматриваемом случае состоят из амортизационных отчислений на реновацию Ир и капитальный ремонт Ик.р, стоимости текущих ремонтов Ит.р, стоимости потерь электроэнергии Ип и прочих эксплуатационных расходов Иэ:

Ин=Ир+Ик.р+Ит.р+Ип+Иэ, (8.5)

Косн=Цк+Цр+Цкомм.апп.=16770+30960+846+99=48675 у.е.

Ир=0,2*48675=9735 у.е.

Ик.р=0,2*48675=9735 у.е.

Ит.р.=0,01*48675=487 у.е.

Ип=630+3000=3630 у.е.

Иэ=0,01*48675=487 у.е.

З=1,1*48675+9735*2+487*2+3630=79700 у.е.

Суммарные затраты З=1777644+79700=1857344 у.е.

Экономический эффект от модернизации.

Дополнительные потери активной мощности при передаче реактивной

Ц=DР*С*Т,

Ц=559*103*0,009*5000=25000 у.е.

Потери в кабельных линиях от низкого коэффициента мощности

Ц=495 у.е.

Потери в электрических машинах от несинусоидального напряжения

Синхронные двигатели можно не учитывать.

Потери в трансформаторах

Ц=600*103*0,009*5000=28700 у.е.

Плата за потребление реактивной мощности.

По табл. 3.6. [8] С=0,0007 у.е./кВАр

Ц=(7800+1800)*0,0007*5000=33600 у.е.

Затраты на установку и обслуживание реакторов на ГПП-33

Стоимость реакторов Ц=4*6000=24000 у.е.

Зк=Гк+рНКк,

где Гк=Заморт.+Зтек.рем.+Зобслуж. – эксплуатационные затраты,

Кк—сметная стоимость реакторов, т. е. капитальные затраты на их установку; рН — нормативный коэффициент эффективности капитальных затрат.

Заморт.=0,12Кк,

Зтек.рем.= Зобслуж.=0,3*Заморт,

Зк=0,12*24000+0,036*24000*2+1,1*24000=31008 у.е.

Суммарная эффективность З=25000+495+28700+33600+31008=118833 у.е.

Окупаемость модернизации составит Т=.


9. Охрана труда

9.1. Опасность поражения электрическим током в рудничных условиях

Действие электрического тока на организм.

Проходя через организм, электрический ток производит термическое, электролитическое и биологическое действия.

Термическое действие выражается в ожогах отдельных участков тела, нагреве кровеносных сосудов, нервов и т. п.

Электролитическое действие выражается в разложении крови и других органических жидкостей, вызывающем значительные нарушения их физико-химических составов.

Биологическое действие является особым специфическим процессом, свойственным лишь живой ткани. Оно выражается в раздражении и возбуждении живых тканей организма, что сопровождается непроизвольными судорожными сокращениями мышц, в том числе мышц сердца и легких. В результате могут возникнуть различные нарушения в организме, в том числе нарушение и даже полное прекращение деятельности органов дыхания и кровообращения. Раздражающее действие тока на ткани организма может быть прямым, когда ток проходит непосредственно по этим тканям и рефлекторным, т. е. через центральную нервную систему, когда путь тока лежит вне этих тканей.

Все это многообразие действий электрического тока приводит к двум видам поражения: электрическим травмам и электрическим ударам.

Электрические травмы — это четко выраженные местные повреждения тканей организма, вызванные воздействием электрического тока или электрической дуги. Различают следующие электрические травмы: электрические ожоги, электрические знаки, металлизация кожи и механические повреждения.

Электрические ожоги могут быть вызваны протеканием тока непосредственно через тело человека, а также воздействием электрической дуги на тело. В первом случае ожог возникает как следствие преобразования энергии электрического тока в тепловую и является сравнительно легким (покраснение кожи, образование пузырей). Ожоги, вызванные электрической дугой носят, как правило, тяжелый характер (омертвение пораженного участка кожи и обугливание тканей).

Электрические знаки — это четко очерченные пятна серого, бледно-желтого цвета диаметром 1—5 мм на поверхности кожи чело века, подвергшегося действию тока. Электрические знаки безболезненны и лечение их заканчивается, как правило, благополучно.

Металлизация кожи — это проникновение в верхние слои кожи мельчайших частичек металла, расплавившегося под действием электрической дуги. Обычно с течением времени больная кожа сходит, пораженный участок приобретает нормальный вид и исчезают болезненные ощущения.

Механические повреждения являются следствием резких непроизвольных судорожных сокращений мышц под действием тока, проходящего через человека. В результате могут произойти разрывы кожи, кровеносных сосудов и нервной ткани, а также вывихи суставов и даже переломы костей. Механические повреждения возникают очень редко.

Электрический удар — это возбуждение живых тканей организма проходящим через него электрическим током, сопровождающееся непроизвольными судорожными сокращениями мышц.

Различают следующие четыре степени ударов:

I — судорожное сокращение мышц без потери сознания;

II — судорожное сокращение мышц с потерей сознания, но с сохранившимся дыханием и работой сердца;

III — потеря сознания и нарушение сердечной деятельности или дыхания (либо того и другого вместе);

IV — клиническая смерть, т. е. отсутствие дыхания и кровообращения.

Клиническая («мнимая») смерть — переходный процесс от жизни к смерти, наступающий с момента прекращения деятельности сердца и легких.

У человека, находящегося в состоянии клинической смерти, отсутствуют все признаки жизни: он не дышит, сердце его не работает, болевые раздражения не вызывают никаких реакций, зрачки глаз расширены и не реагируют на свет. Однако в этот период жизнь в организме еще полностью не угасла, ибо ткани его умирают не все сразу и не сразу угасают функции различных органов. В первый момент почти во всех тканях продолжаются обменные процессы, хотя и на очень низком уровне и резко отличающиеся от обычных, но достаточные для поддержания минимальной жизнедеятельности. Эти обстоятельства позволяют, воздействуя на более стойкие жизненные функции организма, восстановить угасающие или только что угасшие функции, т. е. оживить умирающий организм.

Первыми начинают погибать очень чувствительные к кислородному голоданию клетки коры головного мозга, с деятельностью которых связаны сознание и мышление. Поэтому длительность клинической смерти определяется временем с момента прекращения сердечной деятельности и дыхания до начала гибели клеток коры головного мозга; в большинстве случаев она составляет 4—5 мин, а при гибели здорового человека от случайной причины, например от электрического тока, — 7—8 мин.

Биологическая (истинная) смерть — необратимое явление, характеризующееся прекращением биологических процессов в клетках и тканях организма и распадом белковых структур; она наступает, но истечении периода клинической смерти.

Исход воздействия электрического тока зависит от ряда факторов, в том числе от электрического сопротивления тела человека, величины и длительности протекания через него тока, рода и частоты тока и индивидуальных свойств человека.

Электрическое сопротивление тела человека складывается из сопротивления кожи и сопротивления внутренних тканей.

Кожа, вернее ее верхний слой, называемый эпидермисом, имеющий толщину до 0,2мм и состоящий в основном из мертвых ороговевших клеток, обладает большим сопротивлением, которое и определяет общее сопротивление тела человека. Сопротивление внутренних тканей человека незначительно и составляет 300—500 Ом.

При сухой чистой и неповрежденной коже сопротивление тела человека колеблется в пределах от 2 тыс. до 2 млн. Ом. При увлажнении и загрязнении кожи, а также при повреждении кожи (под контактами) сопротивление тела оказывается наименьшим — 300—500 Ом, т. е. доходит до значения, равного сопротивлению внутренних тканей тела. При расчетах сопротивление тела человека принимается равным 1000 Ом.

Величина тока, протекающего через тело человека, является глав­ным фактором, от которого зависит исход поражения: чем больше ток, тем опаснее его действие. Человек начинает ощущать протекающий через него ток промышленной частоты (50 Гц) относительно малого значения: 0,1—1,5 мА. Этот ток называется пороговым ощутимым током.

Ток 10—15 мА (при 50 Гц) вызывает сильные и весьма болезненные судороги мышц рук, которые человек преодолеть не в состоянии, т. е. он не может разжать руку, которой касается токовсдущой части, не может отбросить провод от себя и оказывается как бы прикованным к токоведущей части. Такой ток называется пороговым неотпускающим.

При 25—50 мА действие тока распространяется и на мышцы грудной клетки, что приводит к затруднению и даже прекращению дыхания. При длительном воздействии этою тока — в течение нескольких минут — может наступить смерть вследствие прекращения работы легких.

При 100 мА ток оказывает непосредственное влияние и на мышцу сердца, вызывая его остановку или фибрилляцию, т. е. быстрые хаотические и разновременные сокращения волокон сердечной мышцы (фибрилл), при которых сердце перестает работать как насос. В результате в организме прекращается кровообращение и наступает смерть.

Длительность протекания тока через тело человека влияет на исход поражения вследствие того, что со временем резко возрастает ток за счет уменьшения сопротивления тела и накапливаются отрицательные последствия воздействия тока на организм.

Род и частота тока в значительной степени определяют степень поражения. Наиболее опасным является переменный ток с частотой от 20 до 1000 Гц. При частоте меньше 20 или больше 1000 Гц опасность поражения током заметно снижается. При постоянном токе пороговый ощутимый ток повышается до 6—7 мА, а пороговый неотнускающчй ток — до 50—70 мА. Токи частотой свыше

100 000 Гц не оказывают раздражающего действия на ткани и поэтому не вызывают электрического удара. Однако они сохраняют опасность по условиям термических ожогов.

9.2. Первая помощь человеку, пораженному электрическим током

Первая доврачебная помощь при несчастных случаях от электрического тока состоит из двух этапов: освобождение пострадавшего от действия тока и оказание ему медицинской помощи.

Освобождение пострадавшего от действия тока может быть осуществлено несколькими способами. Наиболее простой и верный способ — это отключение соответствующей части электроустановки. Если отключение быстро произвести почему-либо нельзя (например, далеко расположен выключатель), можно при напряжении до 1000В перерубить провода топором с деревянной рукояткой или оттянуть пострадавшего от токоведущей части, взявшись за его одежду, если она сухая, отбросить от него провод с помощью деревянной палки и т. п.

При напряжении выше 1000В следует применять диэлектрические перчатки, боты и, в необходимых случаях, изолирующую штату или изолирующие клещи.

Меры первой медицинской помощи пострадавшему от электрического тока зависят от его состояния.

Если пострадавший в сознании, но до этого был в обмороке или продолжительное время находился под током, ему необходимо обеспечить полный покой до прибытия врача или срочно доставить в лечебное учреждение.

При отсутствии сознания, но сохранившемся дыхании нужно ровно и удобно уложить пострадавшего на мягкую подстилку, растегнуть пояс и одежду, обеспечить приток свежего воздуха. Следует давать нюхать нашатырный спирт, обрызгивать водой, растирать и согревать тело.

При отсутствии признаков жизни надо делать искусственное дыхание и массаж сердца.

И с к у с с т в е н н о е д ы х а н и е должно быть начато немедленно после освобождения пострадавшего от действия тока и выявления его состояния. Оно должно производиться методами известными под названием “изо рта в рот” и «изо рта в нос». Эти методы заключаются в том, что оказывающий помощь вдувает воздух из своих легких и легкие пострадавшего через его рот или через нос. Установлено, что воздух, выдыхаемый из легких, содержит достаточное для дыхания количество кислорода. При этом способе пострадавшего укладывают на спину, открывают ему рот и удаляют изо рта посторонние предметы и слизь. Для раскрытия гортани оказывающий помощь запрокидывает голову пострадавшего назад, положив под его затылок одну руку, а второй рукой надавливает на лоб или темя пострадавшего до такой степени, чтобы подбородок оказался на одной линии с шеей.

После этого оказывающий помощь делает глубокий вдох и с силой выдыхает воздух в рот пострадавшего. При этом он должен охватить своим ртом весь рот пострадавшего и своим лицом зажать ему нос. Затем оказывающий помощь откидывается, назад и делает новый вдох. В этот период грудная клетка пострадавшего опускается, и он делает пассивный выдох.

В одну минуту следует делать 10—12 вдуваний. Вдувание воздуха можно производить через марлю, носовой платок или специальную трубку.

При возобновлении у пострадавшего самостоятельного дыхания некоторое время следует продолжать искусственное дыхание до полного приведения пострадавшего в сознание, приурочивая вдувание к началу собственного вдоха пострадавшего.

Наружный массаж сердца имеет целью искусственно поддержать в организме кровообращение и восстановить самостоятельную деятельность сердца.

Определив прощупыванием место надавливания, которое должно находиться примерно на два пальца выше мягкого конца грудины, оказывающий помощь кладет на него нижнюю часть ладони одной руки, а затем поверх первой руки кладет под прямым углом вторую руку и надавливает на грудную клетку пострадавшего, слегка помогая при этом наклоном всего корпуса. Надавливать следует примерно один раз в секунду быстрым толчком так, чтобы продвинуть нижнюю часть грудины вниз в сторону позвоночника на 3—4 см, а у полных людей — на 5—6 см.

После быстрого толчка руки остаются в достигнутом положении примерно в течение 0,5 с. После этого оказывающий помощь должен слегка выпрямиться и расслабить руки, не отнимая их от груди.

Одновременно с массажем сердца нужно выполнять искусственное дыхание (вдувание). Вдувание надо производить в промежутках между надавливанием или же во время специальной паузы через каждые 4—5 надавливаний.

Если помощь оказывает один человек, он обязан чередовать операции: после двух вдувании воздуха производить 15 надавливаний на грудную клетку.

О восстановлении деятельности сердца у пострадавшего судят по появлению у него собственного, не поддерживаемого массажем регулярного пульса. Для проверки пульса необходимо прервать массаж на 2—3 с.

9.3. Анализ опасности поражения током в различных электрических сетях

В рудничных условиях, согласно ПУЭ [2], применяют сети с изолированной нейтралью, что обуславливает некоторые особенности при анализе опасности поражения током.

Случаи поражения человека током возможны лишь при замыкании электрической цепи через тело человека или, иначе говоря, при прикосновении человека не менее чем к двум точкам цепи, между которыми существует некоторое напряжение.

Опасность такого прикосновения, оцениваемая величиной тока, проходящего через тело человека, или же напряжение прикосновения, зависит от ряда факторов: схемы включения человека в цепь, напряжения сети, схемы самой сети, режима ее нейтрали, изоляции токоведущих частей от земли и т.п.

Схемы включения человека и цепь, могут быть различными. Однако наиболее характерными являются две: между двумя проводами и между одним и землей. Разумеется, во втором случае предполагается наличие электрической связи между сетью и землей.

Применительно к сетям переменного тока первую схему обычно называют двухфазным включением, а вторую — однофазным.

Двухфазное включение, т. е. прикосновение человека одновременно к двум фазам, как правило, более опасно, поскольку к телу человека прикладывается наибольшее в данной сети напряжение — линейное, и поэтому через человека пойдет больший ток.

Нетрудно представить, что двухфазное включение является оди­наково опасным в сети как с изолированной, так и с заземленной нейтралями.

При двухфазном включении опасность поражения не уменьшится и в том случае, если человек надежно изолирован от земли, т. е. если он имеет на ногах резиновые галоши или боты, либо стоит на изолирующем (деревянном) полу, или на диэлектрическом коврике.

Однофазное включение происходит значительно чаще, но является менее опасным, чем двухфазное включение, поскольку напряжение, под которым оказывается человек, не превышает фазного, т. е. меньше линейного в 1,73 раза. Соответственно меньше оказывается ток, проходящий через человека.

Кроме того, на величину этого тока влияют также режим нейтрали источника тока, сопротивление изоляции и емкость проводов относительно земли, сопротивление пола, на котором стоит человек, сопротивление его обуви и некоторые другие факторы.

В трехфазной трехпроводной сети с изолированной нейтралью ток, проходящий через человека, при прикосновении к одной из фаз сети в период ее нормальной работы определяется следующим выражением:

, (9.1)

где r и С – соответственно сопротивление изоляции провода и емкость провода относительно земли.

Из выражения следует, что в сетях с изолированной нейтралью, обладающих незначительной емкостью между проводами и землей, что имеет место в воздушных сетях небольшой протяженности, опасность для человека, прикоснувшегося к одной из фаз в период нормальной работы сети, зависит от сопротивления проводов относительно земли: с увеличением сопротивления опасность уменьшается.

Поэтому очень важно в таких сетях обеспечивать высокое сопротивление изоляции и контролировать ее состояние в целях своевременного выявления и устранения возникших неисправностей.

Однако в сетях с большой емкостью относительно земли, что характерно для кабельных сетей, роль изоляции проводов в обеспечении безопасности прикосновения утрачивается.

При аварийном режиме работы сети с изолированной нейтралью, т.е. когда возникло замыкание одной из фаз на землю через малое сопротивление ток через человека, прикоснувшегося к неповрежденной фазе будет больше, т.к. напряжение под которым окажется человек, будет значительно больше фазного и несколько меньше линейного напряжения сети.

Причины поражения электрическим током и основные меры защиты.

Основные причины несчастных случаев от воздействия электрического тока следующие.

1. Случайное прикосновение или приближение на опасное расстояние к токоведущим частям, находящимся под напряжением.

2. Появление напряжения на металлических конструктивных частях электрооборудования — корпусах, кожухах и т. п. — в результате повреждения изоляции и других причин.

3. Появление напряжения на отключенных токоведущих частях на которых работают люди, вследствие ошибочного включения установки.

4. Возникновение шагового напряжения на поверхности земли в результате замыкания провода на землю.

Основными мерами защиты от поражения током являются: обеспечение недоступности токоведущих частей, находящихся под напряжением, для случайного прикосновения; защитное разделение сети; устранение опасности поражения при появлении напряжения на корпусах, кожухах и других частях электрооборудования, что достигается применением малых напряжений, применением двойной изоляции, выравниванием потенциала, защитным заземлением, занулением, защитным отключением и др.; применение специальных защитных средств — переносных приборов и приспособлений; организация безопасной эксплуатации электроустановок.

Защитное разделение сети. В разветвленной электрической сети, т. е. обладающей большой протяженностью, вполне исправная изоляция может иметь малое сопротивление, а емкость проводов относительно земли — большую величину. Эти обстоятельства являются крайне нежелательными по условиям безопасности, так как в таких сетях напряжением до 1000 В с изолированной нейтралью утрачивается защитная роль изоляции проводов и усиливается угроза поражения человека током в случае прикосновения его к проводу сети (или к какому-либо предмету, оказавшемуся под фазным напряжением).

Этот существенный недостаток может быть устранен путем, так называемого защитного разделения сети, т. е. разделения разветвленной (протяженной) сети на отдельные небольшие по протяженности и электрически не связанные между собою участки.

Разделение осуществляется с помощью специальных разделительных трансформаторов. Изолированные участки сети обладают большим сопротивлением изоляции и малой емкостью проводов относительно земли, благодаря чему значительно улучшаются условия безопасности.

Применение пониженного напряжения. При работе с переносным ручным электроинструментом — дрелью, гайковертом, электрическим зубилом и т. п., а также ручной переносной лампой человек имеет длительный контакт с корпусами этого оборудования. В результате для него резко повышается опасность поражения током в случае повреждения изоляции и появления напряжения на корпусе, особенно, если работа производится в помещении с повышенной опасностью, особо опасном или вне помещения..

Для устранения этой опасности необходимо питать ручной инструмент и переносные лампы пониженным напряжением не выше 36В.

Кроме того, в особо опасных помещениях при особо неблагоприятных условиях (например, работа в металлическом резервуаре, работа, сидя или лежа на токопроводящем полу и т. п.) для питания ручных переносных ламп требуется еще более низкое напряжение — 12В.

Защитное заземление.

Защитное заземление — преднамеренное соединение с землей металлических частей оборудования, не находящихся под напряжением в обычных условиях, но которые могут оказаться под напряжением в результате нарушения изоляции электроустановки.

Назначение защитного заземления — устранение опасности поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования, т. е. при «замыкании на корпус».

Принцип действия защитного заземления — снижение до безопасных значений напряжений прикосновения и шага, обусловленных «замыканием на корпус». Это достигается уменьшением потенциала заземленного оборудования, а также выравниванием потенциалов за счет подъема потенциала основания, на котором стоит человек, до потенциала, близкого по величине к потенциалу заземленного оборудования.

Область применения защитного заземления — трехфазные трехпроводные сети напряжением до 1000В с изолированной нейтралью и выше 1000 В с любым режимом нейтрали.

Зануление.

Занулением называется присоединение к неоднократно заземленному нулевому проводу питающей сети корпусов и других конструктивных металлических частей электрооборудования, которые нормально не находятся под напряжением, но вследствие повреждения изоляции могут оказаться под напряжением.

Задача зануления та же, что и защитного заземления: устранение опасности поражения людей током при пробое на корпус. Решается эта задача автоматическим отключением поврежденной установки от сети.

Принцип действия зануления — превращение пробоя на корпус в однофазное короткое замыкание (т. е. замыкание между фазным и нулевым проводами) с целью создания большого тока, способного обеспечить срабатывание защиты и тем самым автоматически отключить поврежденную установку от питающей сети. Такой защитой являются: плавкие предохранители или автоматические выключатели, устанавливаемые перед потребителями энергии для защиты от токов короткого замыкания.

Скорость отключения поврежденной установки, т. е. время с момента появления напряжения на корпусе до момента отключения установки от питающей электросети, составляет 5—7 с. при защите установки плавкими предохранителями и 1—2 с. при защите автоматами.

Область применения зануления — трехфазные четырехпроводные сети напряжением до 1000В с глухозаземленной нейтралью. Обычно это сети напряжением 380/220 и 220/127В, широко применяющиеся в машиностроительной промышленности.

Назначение нулевого провода — создание для тока короткого замыкания цепи с малым сопротивлением, чтобы этот ток был достаточным для быстрого срабатывания защиты.

9.4. Защитные средства, применяемые в электроустановках

В процессе эксплуатации электроустановок нередко возникают условия, при которых даже самое совершенное их выполнение не обеспечивает безопасности работающего и требуется применение специальных защитных средств. Например, при работах вблизи токоведущих частей, находящихся под напряжением, существует опасность прикосновения к этим частям и поэтому требуется специальная изоляция инструмента и работающего. При работах на отключенных токоведущих частях — шинах, проводах и т. п. имеется опасность случайного появления напряжения на них, поэтому должны быть приняты меры, исключающие ошибочную подачу напряжения к месту работ и вместе с тем устраняющие опасность поражения током работающих в случае включения электроустановки под напряжение.

Такими защитными приспособлениями, дополняющими стационарные конструктивные защитные устройства электроустановок, являются так называемые защитные средства — переносные приборы и приспособления, служащие для защиты персонала, работающего в электроустановках, от поражения током, от воздействия электрической дуги и продуктов горения.

Защитные средства условно делятся на три группы: изолирующие, ограждающие и вспомогательные.

Изолирующие защитные средства делятся на основные и дополнительные.

Основные изолирующие защитные средства способны длительное время выдерживать рабочее напряжение электроустановки и поэтому ими разрешается касаться токоведущих частей, находящихся под напряжением, и работать на них. К таким средствам относятся: в электроустановках напряжением до 1000В — диэлектрические резиновые перчатки, инструмент с изолированными рукоятками и токоискатели; в электроустановках напряжением выше 1000В — изолирующие штанги, изолирующие и токоизмерительные клещи, а также указатели высокого напряжения.

Дополнительные изолирующие защитные средства обладают недостаточной электрической прочностью и поэтому не могут самостоятельно защитить человека от поражения током. Их назначение — усилить защитное действие основных изолирующих средств, вместе с которыми они должны применяться. К дополнительным изолирующим защитным средствам относятся:

в электроустановках напряжением до 1000В — диэлектрические галоши, коврики и изолирующие подставки; в электроустановках напряжением выше 1000В — диэлектрические перчатки, боты, коврики и изолирующие подставки.

Изолирующие штанги предназначены для отключения и включения однополюсных разъединителей, для наложения переносных заземлений и других операций.

Изолирующие клещи применяют при обслуживании находящихся под напряжением трубчатых предохранителей.

Токоизмерительные клещи являются переносными приборами, они служат для измерения тока, протекающего в проводе, кабеле и т. п.

Указатель высокого напряжения и токоискатели используют для проверки наличия или отсутствия напряжения на токоведущих частях электроустановок напряжением выше 1000В и до 1000В соответственно.

Резиновые диэлектрические перчатки, галоши, боты и коврики, как дополнительные защитные средства применяют при операциях, выполняемых с помощью основных защитных средств. Кроме того, перчатки используют как основное защитное средство при работах под напряжением до 1000В, а галоши и боты используют в качество средства защиты от шаговых напряжений.

Изолирующие подставки применяются в качестве изолирующего основания.

Монтерский инструмент с изолированными рукоятками применяется при работах под напряжением в электроустановках до 1000 В.

Ограждающие защитные средства предназначены: для временного ограждения токоведущих частей (временные переносные ограждения — щиты, ограждения-клетки, изолирующие накладки, изолирующие колпаки); для предупреждения ошибочных операций (предупредительные плакаты); для временного заземления отключенных токоведущих частей с целью устранения опасности поражения работающих током при случайном появлении напряжения (временные защитные заземления).

Вспомогательные защитные средства предназначены для индивидуальной защиты работающего от световых, тепловых и механических воздействий. К ним относятся защитные очки, противогазы, специальные рукавицы и т. п.

Исправность защитных средств должна проверяться осмотром перед каждым их применением, а также периодически через 6—12 месяцев. Изолирующие защитные средства, а также накладки и колпаки периодически подвергаются электрическим испытаниям.


  Заключение.

В результате выполненной работы произведена компенсация реактивной мощности собсотвенными силами предприятия, т.к. реактивная мощность задаваемая энергосистемой (ТЭЦ-2) не регламентируется. Применение фильтрокомпенсирующих устройств, высоковольтных батарей конденсаторов и синхронных двигателей компрессорной станции позволило полность компенсировать дефицит реактивной мощности рудника.

При идеальной настройке в резонанс силовые резонансные фильтры полностью поглащают высшие гармонические составляющие, на которые они настроены. Т.к. в реальных условиях происходит отклонение от идеальной настройки вследствии ухода номинала элементов фильтра и других причин, то дать количественную оценку коэффициента несинусоидальности после применения СРФ представляется затруднительно.


Библиографический список.

1.  Справочник по электроснабжению и электрооборудованию: в 2 т. / Под общ. ред. А.А. Федорова. Т.2 Электрооборудование. – М.: Энергоатомиздат, 1987. – 592 с.

2.  Правила устройства электроустановок. – М.: Энергоатомиздат, 1985. – 640 с.

3.   Справочник по электроснабжению и электрооборудованию: в 2 т. / Под общ. ред. А.А. Федорова. Т.1 Электроснабжение. – М.: Энергоатомиздат, 1986. – 568 с.

4.  Федоров А.А., Старкова Л.Е. Учебное пособие для курсового и дипломного проектирования по электроснабжению промышленных предприятий: Учеб. пособие для вузов. – М.: Энергоатомиздат, 1987. – 368с.

5.  Техническая информация о выполнении I этапа хоздоговора 082-255 на тему: “Исследование показателей качества электрической энергии в узлах нагрузки с тиристорными преобразователями рудника Таймырский”. Научный руководитель темы Г.В. Иванов.

6.  Электротехнический справочник: в 3-х т. Т.2. Электротехнические устройства / Под общ. ред. проф. МЭИ В.Г. Герасимова, П.Г. Грудинского, Л.А.Жукова и др. – 6-е изд., испр. и доп. – М. Энергоиздат, 1981. – 640 с.

7.  Жежеленко И.В. Высшие гармоники в системах электроснабжения промпредприятий. М., Энергия, 1974. – 184 с.

8.  Железко Ю.С. Выбор мероприятий по снижению потерь электроэнергии в электрических сетях: Руководство для практических расчетов. – М. Энергоатомиздат, 1989. – 176 с.

9.  Александров К.К., Кузьмина Е.Г. Электротехнические чертежи и схемы. – М.: Энергоатомиздат, 1990. – 288 с.

10.   Баркан Я.Д. Автоматическое управление режимом батарей конденсаторов. – М. Энергия, 1978. – 112 с.

11.   Ильяшов В.П. Конденсаторные установки промышленных предприятий. М., Энергия, 1972. – 248 с.

12.   Жежеленко И.В. Качество электроэнергии на промышленных предприятиях. – К.: Техника, 1981. 160 с.

13.   Железко Ю.С. Компенсация реактивной мощности и повышение качества электроэнергии. – М.: Энергоатомиздат, 1985. – 224 с.

14.   Красник В.В. Автоматические устройства по компенсации реактивной мощности в электросетях предприятий. – 2-е изд., перераб. и доп. – М.: Энергоатомиздат, 1983. – 136 с.

15.   Поспелов Е.Г. и др. Компенсирующие и регулирующие устройства в электрических системах. Л.: Энергоатомиздат. Ленингр. отд-ние, 1983. – 112 с.

16.   Охрана труда в машиностроении. Под ред. Е.Я. Юдина. Уч. для вузов. М., Машиностроение, 1976. – 335 с.


Страницы: 1, 2, 3, 4, 5


© 2010 Реферат Live