Рефераты

Cистема Aлор-Трейд

N(l)-количество ИПС размера l в экспериментальной статистической базе данных.

Общее количество ИПС в экспериментальной статистической базе данных - n=627.

Делением каждой величины N(l) на n были получены экспериментальные значения вероятностей f*(l) появления ИПС с размером l. Значения функции f*(l) приведены в табл. 3.

Таблица 3

Экспериментальные значения вероятностей f*(l)появления ИПС с размером l

l

f*(l)

1

0,290

2

0,187

3

0,137

4

0,107

5

0,070

6

0,061

7

0,040

8

0,029

9

0,019

10

0,021

11

0,006

12

0,006

13

0,011

Экспериментально полученная зависимость f*(l) хорошо аппроксимируется показательной функцией:

.

Согласно правилу В.И. Романовского, гипотезу о данном виде функции f(l) можно считать верной, если число R<3:

,

где - статистика Пирсона;

k - число степеней свободы.

Величина вычисляется по формуле:

,

где - абсолютные экспериментальные частоты: =N(j);

- абсолютные теоретические частоты;

m - минимальная величина размера ИПС до которой происходит подсчет .

При этом m и вычисляются по формулам:

m1+ln n

=f(j)n

Число степеней свободы k для экспоненциального вида функции f(l) вычисляется как:

k=m-2

Было выбрано m=8, при этом число R, вычисленное по формулам (13)-(17) составило 0,95<3, т.е. гипотезу о данном виде функции (12) можно считать верной.

Значения f(l), в зависимости от величины l, приведены в табл. 4.

Таблица 4

Значения аппроксимированной зависимости f(l)вероятности появления ИПС размером l от величины l

l

f(l)

1

2

1

0,262

2

0,192

Продолжение табл. 4

1

2

3

0,140

4

0,103

5

0,075

6

0,055

7

0,040

8

0,029

9

0,021

10

0,016

11

0,011

12

0,008

13

0,006

Пусть lmax-размер ИПС, начиная с которого, вероятность появления ИПС с размерами llmax по статистике меньше 0,01. Из приведенных в табл.4.12 результатов видно, что lmax =12 для исследуемых акций. В дальнейших расчетах, будем считать, что максимальный размер ИПС не превышает величины lmax. С учетом этого каждому незаконченному ИПС, размера l (llmax) можно поставить в соответствие функцию fl(х), которая определяет вероятности появления законченных ИПС с размером х: lх12. Функции fl(х) выражаются как:

,

где 1 llmax, lxlmax.

Искомые величины Рр(a,b,c) и Рn(a,b,c) рассчитываются следующим образом:

Рn(a,b,c)=1-Рр(a,b,c),

где l - размер текущего незаконченного ИПС, l=a+b;

fl(x) - вероятность того, что ИПС размером x будет законченным;

H(x) - вероятность того, что новая сделка вызовет повышение САЛК

законченного ИПС размером x.

Поскольку с увеличением значения x число слагаемых в функции H(х) увеличивается по закону геометрической прогрессии, формулы расчета значений H(х) приведены только для H(l) и H(l+1), так что:

если с>0:

H(l)=Рpаc(a,b,c)

H(l+1)=Pt(c)Рpаc(a+1,b,c+1)+(1-Pt(c))Рpаc(a,b+1,-1)

если с<0:

H(l)=Рpаc(a,b,c)

H(l+1)=(1-Pt(c))Рpаc(a+1,b,1)+Pt(c)Рpаc(a,b+1,c-1)

где Рpаc(a,b,c) - вероятность повышения САЛК законченного ИПС с параметрами a,b,c;

Pt(c) - вероятность совершения новой сделки по направлению хвоста индекса незаконченного ИПС в зависимости от величины с.

2.2. Применение теории проверки гипотез Байеса

Пусть имеется выборка х=(х1,...,xn) размера n. Известно, что эта выборка принадлежит одному из двух распределений: W(x|A1) или W(x|A2). Априорные вероятности состояний А1 и А2 равны, соответственно, v1 и v2=1-v1. Необходимо найти оптимальный с точки зрения возможных потерь метод принятия решения о том, какому из указанных распределений принадлежит выборка.

Пусть H1 и H2 гипотезы о том, что выборка принадлежит распределениям, соответственно, W(x|A1) и W(x|A2), а и -решения, состоящие в принятии гипотез, соответственно, Н1 или Н2.

Определим граничное значение х*, в зависимости от которого по текущему х будем принимать решения в пользу гипотезы Н1 или Н2. При х<х*, условимся принимать решение , тогда, как при х>х*, будем принимать решение . Вероятности неизбежных ошибок при принятии решения выражаются как:

где р1 - вероятность принятия решения при реализации гипотезы Н1;

р2 - вероятность принятия решения при реализации гипотезы Н2.

Вероятности принятия правильных решений можно выразить как:

Пусть известны цены правильных и ошибочных решений, так что:

С11-цена правильного принятия решения ;

С21-цена ошибочного принятия решения ;

С22-цена правильного принятия решения ;

С12-цена ошибочного принятия решения ;

С12>C11, C21>C22.

Среднее значение потерь равно:

R=v1r1+v2r2

r1=C11P(|A1)+C12P(|A1)=C11(1-p1)+C12p1

r2=C21P(|A2)+C22P(|A2)=C21p2+C22(1-p2)

Подставляя в (29) выражения (30) и (31), получим:

R=v1C11+v2C21+v1(C12-C11)p1-v2(C21-C22)(1-p2)

Подставляя величины р1 и р2 из (25) и (26) в промежуточное выражение (32), находим, что окончательно среднее значение потерь определяется как:

Минимальное значение средних потерь R достигается, когда подынтегральная функция будет неотрицательной, или когда при интегрировании в области [x*,xn]:

v2(C21-C22)W(x|A2)v1(C12-C11)W(x|A1)

Граничное значение х* находится из выражения:

Функция называется отношением правдоподобия.

Обычно вместо граничного значения х* используется пороговое значение , так что:

Тогда оптимальный метод принятия решения можно выразить так:

при L, принимается решение ; при L<, принимается решение .

Отношения правдоподобия есть, по сути, отношение вероятностей наступления состояний А2 и А1 в зависимости от значения х:

С учетом вышеописанного, рассмотрим нахождение порога принятия решения для прогнозирования и принятия соответствующего рыночной ситуации правильного решения.

Пусть необходимо совершить определенную сделку покупки или продажи ценной бумаги. Такая ситуация может быть обусловлена приказом клиента, распоряжением руководства фирмы или просто собственным решением трейдера, принятым в результате рыночного анализа. Допустим, необходимо купить пакет акций.

Автор диссертации /1/ рассматривает два варианта вычисления порога принятия решения в зависимости от игнорирования или учета величины потенциальной потери.

Рассмотрим первый вариант, когда величина потенциальной потери не принимается в расчет. В этом конкретном случае переменные, входящие в выражение (36), определяются следующим образом.

Величины v2 и v1 описывают вероятности, соответственно, повышения и понижения котировок, которые показывают, как часто встречаются эти события в реальных условиях. Пусть частоты появления этих двух событий одинаковы, тогда:

v1=v2=0,5

Величина С11 представляет собой стоимость правильного решения «не покупать» при последующем снижении котировок. В рассматриваемом варианте:

С11=0

при этом отсутствуют как потери, так и выигрыши.

Величина С12 описывает стоимость ошибочного решения «покупать», при последующем снижении котировок. Эта стоимость складывается из величины убытка L, обусловленного снижением котировочных цен на купленные акции, и уплаченной комиссии за совершение сделки q:

С12=L+q

L вычисляется как произведение величины изменения САЛК и количества купленных акций :

L=|S(i+1)-S(i)|N

S(i+1)<>S(i)

В данной работе принимается, что величина ближайшего изменения САЛК |S(i+1)-S(i)| равняется текущей разнице между ценами лучших предложений на покупку и продажу.

Величина C21 представляет собой стоимость ошибочного решения «не покупать» при дальнейшем увеличении котировок. В данном случае теряется потенциальная прибыль, величина которой равна:

С21=L-q

Величина C22 выражает стоимость правильного решения «покупать» при дальнейшем увеличении котировок, равную полученной прибыли:

С22=-(L-q)

Подставив величины С11, С12, С21, С22, определенные выражениями (38), (39), (40), (41), (44) в формулу (36), получим:

Из выражения (45) видно, что если величина q сравнима с L, потенциальная прибыль, в основном, пойдет на компенсацию комиссионных. В таких случаях, в соответствии с вышеизложенным методом оптимального принятия решения, следует покупать только при значениях Рр(a,b,c), близких к 1.

В случае, когда прибыль много больше комиссии (L>>q), из выражения (45) следует, что ~0,5. Это означает, что осуществлять покупку следует, если:

Рр(a,b,c)0,5Pn(a,b,c)

Во втором варианте вычисления порога принятия решения учитывается величина потенциальной потери. В этом случае в выражении (36) переменная С11 определяется, исходя из следующих соображений. При правильном решении не покупать, с учетом последующего понижения котировок, трейдер виртуально выигрывает величину L+q. Так что:

С11=-(L+q)

После подстановки (38), (40), (43), (44), (47) в выражение (36), последнее приобретает следующий вид:

При условии L>>q, решение о покупке можно принимать только когда Рр(a,b,c)Pn(a,b,c).

2.3. Метод принятия решения с применением теории нечетких множеств

Предлагаемая в данной работе нечеткая модель предназначена для принятия решения. В качестве входной ин-формации (входных переменных модели) приняты следующие па-раметры:

- сравнение затраченных расходов на одну сделку с возможным убытком от совершения очередной сделки (сравнение комиссии с величиной возможного убытка);

- вероятность повышения САЛК текущего незаконченного ИПС;

- денежные средства на счету после совершения очередной сделки.

Модель должна оперировать с обычными (четкими) значениями переменных u (i=1,3). По этим данным модель должна принять решение о дальнейшей стратегии трейдера. В качестве такой выходной ин-формации принимается один из трех возможных вариантов решения: продавать акции, или ждать, или покупать акции. Эти решения обозначим переменной v.

Переменные называются базовыми переменными. Каждая из них определена на своем универсальном множестве, определяемом физическим смыслом переменной. Обозначим эти множества соот-ветственно .

Входные данные были оценены с помощью субъективных качественных понятий типа "много", "мало" и т.п. Эти качественные оценки отношения возможных убытков к комиссии, вероятности повышения, наличия денежных средств формализуются с помощью так называемых лингвистических перемен-ных соответственно.

Лингвистическая переменная /3/ Aj ( j =1,4) характе-ризуется следующим набором:

<>,

где Aj - название переменной;

T(Aj) - множество зна-чений переменной (множество термов);

Uj - универ-сальное множество соответствующей базовой перемен-ной u.

Ниже приведены значения компонент указанного набора:

= "сравнение комиссии с величиной возможного убытка", Т() = "комиссия больше убытков, комиссия сравнима с убытками, комиссия меньше убытков";

= "вероятность повышения", Т() = "маленькая, сред-няя, большая ";

= "денежные средства на счету", Т() = "недостаточно средств для совершения сделки, достаточно средств для совершения сделки".

Множествам Т() и Т() соответствуют три терма, множеству Т() два.

Каждый терм Tji(Aj) (i = 1,3) характеризуется функцией принадлежности ji(uj), которая определена на соответствующем универсальном множестве Uj и выражает смысл данного терма.

Функции принадлежности имеют вид трапеций. Практика построения и использования функций принадлежности показала, что кусочно-линейная (тре-угольная или трапецеидальная) форма функции вполне удовлетворяет практическим потребностям /3/.

Определим теперь описание выходной переменной - принятия решения. Это лингвистическая пере-менная В, которая характеризуется также набором, по-добным предыдущему:

<В, Т(В), V>,

где В - название переменной (В = "Принятие решения");

Т(В) - множество термов (Т(В) = "продавать", "ждать", "покупать");

V - универсальное мно-жество базовой переменной v.

Заданы значения функции принадлежности .

Модель управления в рассматриваемом случае есть модель связи между входными переменными и выходной переменной v. Механизм этой связи включает суждения трейдера о значениях переменных. В результате на основе численного значения каждой из входных переменных оператор присваивает им качест-венные (то есть нечеткие) значения. Свое решение он также принимает на основе нечеткого значения выход-ной переменной. Это означает, что трейдер интуитив-но пользуется нечеткой логикой, а конкретно - прави-лами нечеткого вывода. Поэтому в формальную модель управления включены эти правила.

Смысл нечеткого вывода состоит в следующем. Ес-ли А - причина (предпосылка), а В - результат (заклю-чение), то можно определить нечеткое отношение R соответствия между А и В, смысл которого отражается в знании: из А скорее всего следует В. Это знание вы-ражено формулой (где - это символ нечет-кой импликации /3/ ). Тогда связь между нечеткой предпосылкой А и нечетким заключением В можно за-писать в виде:

здесь значок - это правило композиционного вывода (правило свертки) /3/.

В рассматриваемой логической системе предпосыл-ки определяются лингвистическими переменными , а заключение - лингвистической перемен-ной В. В каждом конкретном правиле имеются три предпосылки (по числу входных переменных) и одно заключение. Каждое такое логическое правило опреде-ляет одно из возможных состояний объекта управле-ния, а полный набор правил характеризует все возмож-ные состояния. Поскольку в правилах вывода должны при-сутствовать все комбинации значений, то общее число правил равно 3*2= 18.

В виде термов одно из этих правил может быть на-писано следующим образом: если комиссия сравнима с величиной возможного убытка, вероятность повышения большая, достаточно средств для совершения сделки, то принять решение «покупать».

Для превращения этого текста в формальную про-цедуру нужно установить вид правила композиционно-го вывода в форму нечеткой импликации.

В качестве правила композиционного вывода примем максиминную композицию, а в качестве нечет-кой импликации - правило минимума (пересечение не-четких множеств предпосылки и заключения).

Нечеткое отношение R для L-го правила между j-й входной переменной и выходной переменной v в со-ответствии с принятым правилом минимума выражено следующей функцией принадлежности:

Здесь индекс i(L) означает индекс i-го терма в L-м правиле вывода (напомним, что термов входных пере-менных всего три). Функция принадлежности (52) отоб-ражает отношение связи между числовыми значениями в паре (). Чем больше ее значение, тем теснее эта связь.

Результаты измерения (наблюдения) входных пере-менных могут быть выражены как обычными числовы-ми (четкими) значениями, так и качественными значе-ниями (нечеткими множествами).

Пусть входные переменные представлены нечет-кими множествами с функциями принадлежности . Заметим, что эти функции есть результат работы системы наблюдения (измерения) в отличие от ранее введенных функций ji(uj), которые выражают мнение эксперта-трейдера по поводу конкретных значений . Тогда в соответствии с формулой (51) и принятым пра-вилом композиционного вывода (maxmin) можно запи-сать связь между выходной переменной v и входной переменной следующим образом:

(

Здесь есть функция принадлежности, устанав-ливающая локальную связь между нечеткой входной переменной и нечеткой выходной переменной v.

Подставив (52) в (53), получим:

(

Поскольку в L-м правиле логического вывода ис-ходные посылки связаны логическим "и" (то есть на-личием данных обо всех трех входных переменных для вывода значения выходной переменной), то соот-ветствующая операция над нечеткими множествами реализуется в виде их пересечения. Последнее же реа-лизуется /3/ с помощью операции минимума над соот-ветствующими функциями принадлежности.

Обозначим нечеткое множество, соответствующее выходной переменной и полученное на основании L-гo правила вывода через ,а его функцию принадлеж-ности через . Тогда можно записать:

Данные о выходной переменной, полученные из всех правил вывода (в нашем случае их число равно 18), должны быть логически объединены. Это соответствует операции максимума над функциями принадлежности /3/. Обозначив через Q результирующее нечеткое мно-жество, соответствующее выходной переменной v, а че-рез - его функцию принадлежности, окончатель-но запишем:

Пусть теперь входные переменные (j = 1,3) имеют обычные числовые значения . Тогда значения определены на обычном множестве, для которого фор-мально можно записать функцию принадлежности, учи-тывая, что обычное множество есть частный случай не-четкого множества. Эта функция равна 1, если , и равна 0 - в противном случае. Тогда в формуле (53) и . При этом операция max в (53) сводится к выбору единственного значения при .

После этого формула (54) прини-мает вид:

Итак, вычислена функция принадлежности нечет-кой переменной "принятие решения". Теперь нуж-но оценить конкретное значение v* для принятия ре-шения о дальнейших действиях. Эта процедура на-зывается дефазификацией. Здесь предлагается исполь-зовать наиболее распространенный метод дефазификации /3/ - нахождение центра тяжести функции принад-лежности:

Здесь V- область определения (универсальное множест-во) функции.

Интеграл вычислялся методом трапеций /4/ по формуле:

,

где - значения независимой переменной,

- значения функции,

причем .

Таким образом, полученная модель использует три входных переменных , имеющих четкие значе-ния, и выдает выходную переменную v также в четком виде. Внутренняя же структура модели является нечеткой.

3. АНАЛИЗ РЕЗУЛЬТАТОВ

3.1. Описание программы

В программе вызываются два окна.

Первое окно называется “Расчет вероятностей”. Оно предназначено для расчета вероятностей повышения и понижения САЛК на основе полученных статистических данных. Окно приведено на рис. 5.

Окно “Расчет вероятностей”

Рис. 5

В поле “Путь к данным из РТС” вводится путь к файлу Excel, в котором хранятся данные для расчета. Файл содержит следующие данные: время сделки, цена сделки, лучшее предложение на покупку, лучшее предложение на продажу. Путь может быть введен либо вручную, либо с помощью просмотра дерева каталогов, которое вызывается с помощью кнопки справа от поля.

В поле “Путь к выходному файлу” вводится путь к файлу Excel, в котором находятся полученные в результате расчета данные. Путь может быть введен либо вручную, либо с помощью просмотра дерева каталогов, которое вызывается с помощью кнопки справа от поля.

Расчет можно производить либо частично, либо полностью. Для того, чтобы расчитать полностью, достаточно поставить галочку перед надписью Создать новый файл результатов”. Если было принято решение пересчитать какую-то часть, нужно выбрать соответствующую надпись, и поставить галочку перед ней.

С помощью кнопки “Запустить модель” вызывается второе окно программы, которое называется “Параметры моделей принятия решений”. Это окно содержит шесть закладок.

Первая закладка называется “Параметры”. В этой закладке задаются следующие параметры работы моделей принятия решений:

начальная сумма $ - вводится начальная сумма денежных средств, которая находится на счету трейдера до начала работы модели;

комиссия в сутки - вводится исходя из того, сколько денежных средств тратится на торговлю ценными бумагами за сутки; (Сюда включаются все расходы: комиссия за место на бирже, комиссия за совершение сделки, плата за пользованиие Интернетом и т. п.)

примерное количество сделок - приблизительно, сколько сделок вы собираетесь совершить в сутки. (Это нужно для предварительного расчета того, сколько может быть максимально потрачено денежных средств на одну сделку, чтобы не быть в убытке)

шаг сделок - периодичность, с которой будут осуществлены сделки, интервал между сделками;

порог принятия решения - вводится для Байесовской модели, вероятность от 0 до 1 повышения САЛК, выше которой акции продаются и понижения САЛК, ниже которой акции покупаются.

Закладка "Параметры" приведена на рис. 6.

Закладка "Параметры"

Рис. 6

Вторая закладка называется “L и q”. Здесь задаются точки перегиба функций принадлежности лингвистической переменной “отношение возможных убытков к комиссии”. Закладка “L и q” приведена на рис. 7.

Третья закладка называется Вероятность”. Здесь задаются точки перегиба функций принадлежности лингвистической переменной “вероятность повышения”.

Закладка “Вероятность” приведена на рис. 8.

Четвертая закладка называется Денежные средства”. Здесь задаются точки перегиба функций принадлежности лингвистической переменной “наличие денежных средств”.

Закладка “Денежные средства” приведена на рис. 9.

Закладка “L и q”

Рис. 7

Закладка “Вероятность”

Рис. 8

Закладка “Денежные средства

Рис. 9

Пятая закладка называется Принятие решения”. Здесь задаются точки перегиба функций принадлежности лингвистической переменной “принятие решения”. Закладка приведена на рис. 10.

Закладка “Принятие решения

Рис. 10

Шестая закладка называется “Правила”. Здесь задаются правила, по которым строится нечеткая модель. Закладка “Правила” приведена на рис. 11.

Закладка “Правила”

Рис. 11

После установки всех параметров модели могут быть запущены с помощью кнопок “Запустить Байесовскую модель” и “Запустить нечеткую модель”. В процессе работы моделей на экране появляется окно “Работа модели”, показанное на рис. 12.

Окно “Работа модели”

Рис. 12

В этом окне показывается, сколько денежных средств и акций имеет в данный момент трейдер в своем распоряжении. В любой момент работа модели может быть прервана с помощью кнопки “Abort”. В случае если работа модели будет прервана и по завершении работы модели выводится окно “Результат работы”, представленное на рис. 13.

Окно “Результат работы”

Рис. 13

В качестве результатов выводятся следующие параметры: количество совершенных сделок (здесь за одну сделку приняты две подряд идущие: покупка и продажа акций, так как в противном случае (если последней будет сделка покупки акций) мы не сможем определить, убыточная она или прибыльная); количество прибыльных сделок (сделка считается прибыльной, если сумма денежных средств трейдера после ее совершения стала больше, чем до сделки); количество убыточных сделок (сделка считается убыточной, если сумма денежных средств трейдера после ее совершения стала меньше, чем до сделки); количество сделок, после которых средств стало меньше первоначальных; сколько осталось средств на счету.

3.2. Сравнение результатов работы методов

Для сравнения результатов обе модели были настроены наилучшим образом. Были приняты такие значения параметров, при которых модели дают наибольшую прибыль и при которых наблюдается наименьшее количество убыточных сделок.

Для Байесовской модели меняли порог принятия решения при одинаковых параметрах. Результаты подбора приведены в табл. 5.

Таблица 5

Подбор порога принятия решения для Байесовской модели

Порог

Всего сделок

Убыточных сделок

После которых средств стало меньше первоначальных

Количество денежных средств на счету, $

0,1

35

17

25

99,4

0,2

35

16

25

99,4

0,3

35

13

13

102,6

0,4

35

15

4

103,1

0,5

35

15

4

103,1

0,6

34

14

4

106,6

0,7

34

12

1

107,1

0,8

33

12

6

108,4

0,9

27

15

27

97,9

Таким образом, для Байесовсой модели был выбран порог 0,8.

Точки перегиба функций принадлежности задавались из тех же соображений.

После настройки моделей, менялась начальная сумма, остальные параметры оставались одинаковыми. Были получены результаты, которые приведены в табл. 6 и табл. 7.

Таблица 6

Результаты работы Байесовской модели

Начальная сумма, $

Всего сделок

Прибыльных сделок

Убыто-чных сделок

После которых средств стало меньше первоначальн-ых

Количество денежных средств на счету, $

Прибыль от работы модели, $

100

33

21

12

6

108,4

8,4

200

33

21

12

6

217,2

17,2

300

33

21

12

6

325,3

25,3

400

33

21

12

6

433,8

33,8

500

33

21

12

6

542,2

42,2

600

33

21

12

6

650,7

50,7

700

33

21

12

6

759,1

59,1

800

33

21

12

6

867,6

67,6

900

33

19

14

32

856,4

-43,6

1000

33

21

12

6

1084,4

84,4

1100

33

21

12

6

1192,9

92,9

1200

33

21

12

6

1301,3

101,3

1300

33

21

12

6

1409,8

109,8

1400

33

21

12

6

1518,2

118,2

1500

33

21

12

6

1625,3

125,3

1600

33

21

12

6

1735,1

135,1

1700

33

21

12

6

1843,5

143,5

1800

33

19

14

30

1737,7

-62,3

1900

33

21

12

6

2060,4

160,4

2000

33

21

12

6

2168,9

168,9

Таблица 7

Результаты работы нечеткой модели

Начальная сумма, $

Всего сделок

Прибыльных сделок

Убыточных сделок

После которых средств стало меньше первоначальных

Количество денежных средств на счету, $

Прибыль от работы модели, $

1

2

3

4

5

6

7

100

3

3

0

0

106,7

6,7

200

7

5

2

0

222

22

300

6

4

2

0

328,5

28,5

400

8

6

2

0

448,8

48,8

500

8

5

3

0

549,9

49,9

Продолжение табл. 7

1

2

3

4

5

6

7

600

8

5

3

0

660,7

60,7

700

8

5

3

0

770,9

70,9

800

9

6

3

0

883,7

83,7

900

9

6

3

0

983

83

1000

10

7

3

1

1095,2

95,2

1100

11

8

3

1

1204,1

104,1

1200

12

9

3

1

1345,2

145,2

1300

11

8

3

0

1464,7

164,7

1400

11

8

3

0

1577,4

177,4

1500

9

7

2

0

1631,8

131,8

1600

9

7

2

0

1762,8

162,8

1700

9

7

2

0

1872,1

172,1

1800

9

7

2

0

1982,1

182,1

1900

10

7

3

0

2072,1

172,1

2000

10

7

3

0

2181,2

181,2

На основе этих таблиц были построены и проанализированы графики зависимостей прибыли, которую дают модели, а также относительного числа прибыльных и убыточных сделок от начальной суммы. Графики приведены на рис. 14, рис.15 и рис.16 соответственно.

Графики наглядно демонстрируют преимущества нечеткой модели и ее эффективность.

Прибыль от работы нечеткой модели явно выше, чем от Байесовской. (см. рис.14) Кроме того, в нечеткой модели нет таких явных выбросов - она работает стабильнее. Как видно из табл. 7, только в трех случаях из двадцати количество на счету стало ниже первоначальной суммы, но сразу после этого оно восстановилось (так как это происходило только после одной сделки). Совсем иначе дело обстоит с Байесовской моделью. В процессе ее функционирования по шесть сделок из двадцати количество денежных средств опускалось ниже первоначальной суммы. Соответственно, и относительное число прибыльных сделок явно больше располагает к доверию трейдера в случае нечеткой модели.

Рис. 14

Рис. 15

Рис. 16

4. БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ

Выполнение экспериментальной части дипломной работы связано с опасными и вредными производственными факторами. Целью данного раздела является выявление этих факторов, их анализ, решение вопросов устройства и оборудования рабочего места, выбор и расчет технических средств, сопутствующих разработке программного обеспечения.

4.1. Идентификация опасных и вредных производственных факторов

В соответствии с классификацией по ГОСТ 12.0.003-74 произведен анализ опасных и вредных производственных факторов. Результаты анализа представлены в табл. 8.

Таблица 8

Потенциально опасные и вредные производственные факторы

Наименование

операции

Используемое оборудование

Опасные и вредные

производственные факторы

Нормируемое

значение параметра

1

2

3

4

1.Включение и

выключение

оборудования

Рубильники,

выключатели

Опасный уровень

напряжения электрической цепи, замыкание которой может произойти через тело человека,

U=220 B

Предельно допустимые уровни напряжений прикосновения и токов:

Uприкосн=2 B,

I=0.3 мA

Продолжение табл. 8

1

2

3

4

2. Составление и

отладка программы, оформление пояснительной записки и плакатов

Монитор,

системный блок,

источники

питания

а) Повышенный уровень ионизирующего излучения,

=8 ч/день

б) Повышенный уровень электромагнитного излучения,

Е=10 В/м

а) ПД=15 мЗв/год

б) Е=5 В/м

3. Распечатка

пояснительной

записки и плакатов

Принтер

Повышенный уровень шума на рабочем месте (несколько принтеров),

L=70 дБ А

L=65 дБ А

4.2. Санитарно-технические требования к помещению

Выполнение дипломной работы было связано с программированием за ЭВМ. Помещение, в котором создавалось программное средство, имеет площадь 24 м2 .

В помещении имеется два рабочих места. На одного работающего приходится 12 м2 площади. Это соответствует санитарным нормам, так как в помещении для эксплуатации ЭВМ на одного сотрудника должна приходиться площадь не менее 6 м.

В помещении расположено следующее оборудование: персональная ЭВМ - 2 шт., дисплей - 2 шт., принтеры - 2 шт.

Микроклимат лаборатории соответствует установленным требованиям.

В помещениях с ПЭВМ должны обеспечиваться оптимальные параметры микроклимата для категории Iа (работы, выполняемые сидя). Нормативные значения температуры, относительной влажности и скорости движения воздуха приведены в табл. 9.

Таблица 9

Оптимальные нормы температуры, относительной влажности и скорости движения воздуха

Сезон года

Условия

Категория работ

Температура

воздуха,

°С

Относительная

влажность,

%

Скорость

движения

воздуха,

м/с, не более

Холодный

период

t<10°C

Оптимальные

Легкая Iа

22-24

40-60

0,1

Существующие

20-22

55

Теплый

период

t>10°C

Оптимальные

Легкая Iа

23-25

40-60

0,1

Существующие

22-24

60

Необходимый воздухообмен обеспечивается естественной и механической общеобменной вентиляцией. В холодное время года тепло в помещении обеспечивается водяным отоплением. Рассмотренные выше параметры микроклимата соответствуют нормативам.

Eстественноe освещение обеспечивается окнами, также предусмотрено искусственное освещение. При общем освещении освещенность должна составлять Eн=300 лк. Общее освещение обеспечивается семью светильниками с люминесцентными лампами белого света ЛБ-40 (световой поток Фл=3120 лк).

Расчет числа светильников в помещении производится по формуле:

N=(EнSkz)/(Флn),

где

N

-

число светильников в помещении, N=7;

-

нормированное значение освещенности, Eн=300 лк;

S

-

площадь освещаемого помещения, S=24 м2;

k

-

коэффициент запаса (для общественных помещений принимается равным 1,5);

z

-

коэффициент минимальной освещенности (в расчетах принимается равным 1,2);

n

-

количество ламп в одном светильнике, n=2;

--

-

коэффициент использования светового потока.

Сначала определяется индекс помещения i:

i=AB/((A+B)H),

где

А

-

ширина помещения, А=3 м;

В

-

длина помещения, В=6 м;

Н

-

высота подвеса светильника над рабочей поверхностью, Н=2,4 м.

i=36/((3+6)2,4)=0,83

Коэффициент использования светового потока для данных условий принимается равным 0,33.

Освещенность помещения составит:

E=(NФлn)/(Skz)=(7312020,33)/(241,51,2)=333,66 лк

Е больше Eн, следовательно, необходимости устанавливать дополнительные светильники нет.

4.3. Разработка мер защиты от опасных и вредных факторов

В качестве организационных мер защиты от поражения электрическим током необходимо проведение инструктажа по технике безопасности обслуживающего персонала, соблюдение персоналом правил эксплуатации, осмотров и ремонтов оборудования.

По техническим мерам защиты предпринимается следующее: пол, все ручки выполнены из изолирующих материалов, предусматривается зануление и защитное отключение.

Организационные меры защиты от ионизирующего и электромагнитного излучения - регламентация рабочего времени. Необходимо также соблюдать режим труда и отдыха.

Профилактике профессиональных заболеваний способствует правильная организация труда и отдыха в шумных помещениях. Не следует допускать воздействия шума в течение более 50-65 % рабочего времени. Предусматриваемое место для отдыха необходимо изолировать от шума. При превышении норм по шуму работающих подвергают периодическим медицинским осмотрам. При обнаружении нарушений здоровья необходим перевод на другую работу.

К техническим мерам защиты от шума относят следующее: рациональное размещение оборудования и звукопоглощающая облицовка стен.

4.4. Безопасность жизнедеятельности в чрезвычайных ситуациях

По степени электробезопасности офис относится к помещениям с повышенной опасностью.

Рассматриваемое помещение по взрывопожарной и пожарной опасности соответствует категории В (пожароопасное помещение), так как в нем имеются горючие материалы (мебель, бумага, покрытие пола, шторы, пыль), которые горят при взаимодействии с кислородом воздуха.

Любой процесс горения сводится к взаимодействию:

C+O2=CO2

Количество горючих веществ составляет Gгв=130 кг, а тепловой эффект реакции составляет Qтепл. углерода=34,07 МДж/кг.

Пожарная нагрузка определяется по формуле:

Q=Qтепл. углеродаGгв

Следовательно, пожарная нагрузка Q составляет 4429 МДж.

Удельная пожарная нагрузка определяется по формуле:

q=Q/S

Удельная пожарная нагрузка q составляет 184 МДж/м2.

Проверяется условие:

Q<0,64qH

Оно не выполняется, следовательно, помещение соответствует категории В2.

В качестве средств пожаротушения применяется ручной углекислотный огнетушитель ОУ-2. Исправность огнетушителя периодически проверяется.

4.5. Специальные разработки по обеспечению безопасности.
Эргономические требования к рабочему месту оператора

При работе с использованием видеодисплейных терминалов (в дальнейшем именуемых ВДТ) и персональных ЭВМ (в дальнейшем ПЭВМ) приблизительно у 80 % пользователей наблюдаются физические расстройства различной степени тяжести. Основные из них: расстройства органов зрения и различные мышечные расстройства.

Для устранения и снижения воздействия этих вредных факторов на организм человека специалистами разработан ряд эргономических требований к использующейся аппаратуре.

Любой труд, связанный с необходимостью пристально смотреть в одну точку, приводит к перенапряжению глаз. Но особый урон здоровью наносит работа за экраном монитора. Расстояние от монитора до глаз в процессе работы не меняется, постоянно подвергая их таким раздражителям, как резкий яркий свет и мерцание. Проблемы со зрением связаны с неправильным освещением в помещении, неподходящим разрешением экрана, ослепляющей яркостью, а также мерцанием монитора.

Для обеспечения надежного и удобного считывания информации при соответствующей степени комфортности ее восприятия в CaнПиH 2.2.2.542-96 определены оптимальные и допустимые диапазоны визуальных эргономических параметров. Визуальные эргономические параметры и пределы их изменений приведены в табл. 10.

Таблица 10

Визуальные эргономические параметры ВДТ и пределы их изменений

Наименование параметров

Пределы значений параметров

Минимум

Максимум

Яркость знака (яркость фона), кд/м3

(измеренная в темноте)

35

120

Внешняя освещенность экрана, лк

100

250

Угловой размер знака, угл. мин

16

60

Под угловым размером знака понимают угол между линиями, соединяющими крайние точки знака по высоте и глаз наблюдателя.

Угловой размер знака определяется по формуле:

=arctg (h/2L),

где h - высота знака;

L - расстояние от знака до глаза наблюдателя.

Принимается h=4 мм, L=600 мм. Угловой размер знака будет составлять по формуле (38):

=arctg(4/2600) =18

Угловой размер знака попадает в рекомендуемый диапазон.

Для профилактики расстройств органов зрения рекомендуется периодически консультироваться у окулиста. Если обнаруживается разница в зрении правым и левым глазом, необходимо ее скорректировать, иначе вся нагрузка придется на здоровый глаз.

Необходимо обеспечить прочность и устойчивость конструкции рабочего стола. Высота стола составляет 65-85 см.

Выбор типа рабочего кресла зависит от продолжительности работы: при длительной работе должны быть выбраны массивные кресла, а при кратковременной работе - кресла легкой конструкции. Высота сидения должна быть 42-55 см, также необходимо варьировать и наклон в следующих пределах: вперед - до 2 градусов, назад - до 14 градусов.

Необходимо соблюдать правильное размещение оборудования на столе:

- при периодическом наблюдении за экраном - экран располагается справа, клавиатура с правого плеча, документы в центре угла обзора;

- при постоянной работе за компьютером - экран располагается в центре, а документы слева на специальной подставке.

Конструкция ВДТ должна обеспечивать возможность фронтального наблюдения экрана. Дизайн ВДТ должен предусматривать окраску корпуса в спокойные мягкие тона с диффузионным рассеиванием света. Корпус ВДТ и ПЭВМ, клавиатура и другие блоки и устройства ПЭВМ должны иметь матовую поверхность одного цвета с коэффициентом отражения 0,4-0,6 и не иметь блестящих деталей, способных создавать блики.

Положение монитора должно быть таким, чтобы свет на него падал под углом. Экран монитора должен располагаться примерно на расстоянии 28-60 см от оператора, причем верхний край экрана должен находиться на уровне глаз. Рекомендуется при возможности уменьшать интенсивность света люминисцентных источников. Для монитора должны быть предусмотрены ручки регулировки яркости и контраста изображения, обеспечивающие возможность регулировки этих параметров от минимальных до максимальных значений.

При необходимости рекомендуется применять защитные фильтры для ослабления воздействия излучения экрана, уменьшения отраженной блескости изображения, снижения статического заряда. Использование защитных фильтров делает менее заметным мерцание монитора.

Для любого монитора, используемого на территории РФ, обязательно соблюдение требований стандарта ГОСТ 27954-88 на видеомониторы персональных ЭВМ. Основные требования этого стандарта приведены в табл. 11.

Таблица 11

Основные характеристики монитора

Характеристики монитора

Требования ГОСТ 27954-88

Частота кадров с позитивным контрастом

Не менее 60 Гц

Частота кадров в режиме обработки текста

Не менее 72 Гц

Дрожание элементов изображения

Не более 0,1 мм

Антибликовое покрытие

Обязательно

Допустимый уровень шума

Не более 50 дб А

Мощность дозы рентгеновского излучения на расстоянии 5 см от экрана при 41-часовой рабочей неделе

Не более 0,03 мкР/с

На лицевой стороне корпуса ВДТ не рекомендуется располагать органы управления, маркировку, какие-либо вспомогательные надписи и обозначения. При необходимости расположения органов управления на лицевой панели они должны закрываться крышкой или быть утоплены в корпусе.

Конструкция клавиатуры должна предусматривать:

- исполнение в виде отдельного устройства с возможностью свободного перемещения;

- опорное приспособление, позволяющее изменять угол наклона поверхности клавиатуры в пределах от 5 до 15 градусов;

- выделение цветом, размером, формой и местом расположения функциональных групп клавиш;

- минимальный размер клавиш - 13 мм, оптимальный 15 мм;

- одинаковый ход для всех клавиш с минимальным сопротивлением нажатию 0,25 Н и максимальным - не более 1,5 Н.

В зависимости от вида трудовой деятельности и продолжительности рабочей смены необходимо соблюдать регламентированный режим труда и отдыха. Так, для первой категории работы с ПЭВМ - в режиме ввода информации (число знаков до 15000), в режиме считывания информации (число знаков до 20000), работа в режиме диалога (до 2 часов), суммарное время перерывов при восьмичасовой смене составляет 30 минут.

Длительное пребывание в одном и том же положении и повторение одних и тех же движений вызывает различные мышечные расстройства.

Для профилактики возникновения мышечных расстройств при работе на ЭВМ рекомендуется выполнение следующих требований:

- руки должны быть выпрямлены в запястьях и согнуты в локтях примерно под прямым углом, пальцы тоже должны быть слегка согнуты;

- удары по клавишам не должны быть слишком сильными;

- рабочее кресло должно иметь подлокотники, отрегулированные соответствующим образом, которые служили бы опорой для рук как при работе с клавиатурой, так и при пользовании мышью;

- при чувстве напряженности или спазмов в мышцах следует немедленно прекратить работу;

- высота рабочего стула должна быть отрегулирована так, чтобы бедра были параллельны полу;

- ноги должны твердо стоять на полу, а если приходится работать за высоким стулом, следует пользоваться подставкой;

- сидеть нужно прямо или слегка подать корпус вперед, стараясь сохранить естественный изгиб тела в пояснице;

- клавиатура и мышь должны быть расположены так, чтобы к ним не приходилось тянуться;

- документ рекомендуется закреплять рядом с монитором специальной подставкой;

- рекомендуется держать на столе эластичную резиновую игрушку или кольцоэспандер и время от времени с его помощью разминать кисти рук;

- через некоторое время сменить режим работы.

Выполнение описанных выше требований поможет избежать неприятных последствий при работе за ПЭВМ.

5. ОХРАНА ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЫ

В настоящее время возрастает количество компьютерной техники во всех отраслях деятельности человека. В этих условиях нельзя не учитывать влияние компьютеров на окружающую среду.

В жизненном цикле компьютерной техники можно выделить три этапа: производство, эксплуатация, утилизация.

Производство. Вопросы защиты окружающей среды в про-цессе производства компьютеров возникли давно и регламентиру-ются сейчас, в частности, стандартом NUТЕК, по которому контролируются выбросы токсичных веществ, условия работы и др. Согласно стандарту произведенное оборудование может быть сертифицировано лишь в том случае, если не только контроли-руемые параметры самого оборудования соответствуют требова-ниям этого стандарта, но и технология производства этого обору-дования отвечает требованиям стандарта.

Эксплуатация. Воздействие компьютеров на окружающую среду при эксплуатации регламентировано рядом стандартов. Выделяют две группы стандартов и рекомендаций - по безопасности и эргономике. Кратко остановимся на требованиях некоторых из них.

Ограничения на излучения от компьютерных мониторов и промышленной техники, используемой в офисе, налагает стандарт МРR-II разработанный Шведским национальным департаментом стандартов и утвержденный ЕЭС. Взаимодействие с окружающей средой регламентирует рекомендация ТСО-95 NUТЕК (Швеция). Монитор, отвечающим ТСО-95, должен иметь низкий уровень элек-тромагнитных излучений, обеспечивать автоматическое снижение энергопотребления при долгом неиспользовании, отвечать евро-пейским стандартам пожарной и электрической безопасности. Требования ТСО-95 являются гораздо более жесткими, чем требо-вания МРR-II. Экологическая оценка компьютера и, в частности, ВДТ как наибольшего потребителя энергии в ПЭВМ включает тре-бования по экономии и снижению энергопотребления. Согласно стандарту ЕРА Еnеrgу Star VESA DРМS монитор должен поддер-живать три энергосберегающих режима - ожидание (stand-by), при-остановку (suspend) и "сон” (off). Требования отечественного стандарта к ПЭВМ и ВДТ - СанПиН 2.2.2.542-96 - соответствуют МРR-II.

Монитор и компьютер, за которым выполнялась дипломная работа, поддерживают три энергосберегающих режима и стандарт безопасности ТСО-95.

Утилизация. Рост применения компьютерной техники, ее быстрое моральное старение остро ставит вопрос об утилизации элементов ЭВМ после окончания срока ее эксплуатации.

При утилизации старых компьютеров происходит их разра-ботка на фракции: металлы, пластмассы, стекло, провода, штекеры. Из одной тонны компьютерного лома получают до 200 кг меди, 480 кг железа и нержавеющей стали, 32 кг алюминия. 3 кг серебра, 1 кг золота и 300 г палладия.

В настоящее время разработаны следующие методы переработки компьютерного лома и защиты литосферы от него:

- сортировка печатных плат по доминирующим материалам: дробление и измельчение; гранулирование, в отдельных случаях сепарация, обжиг полученной массы для удаления сгорающих компонент;

- расплавление полученной массы, рафинирование; прецизионное извлечение отдельных металлов: создание экологических схем переработки компьютерного лома;

- создание экологически чистых компьютеров.

В последнее время приняты радикальные меры по улуч-шению разделки, сортировки и использования лома и отходов цветных металлов. Важной задачей является переработка медных проводов и кабелей, так как более одной трети меди идет на про-изводство проводов.

Лучшим способом разделки проводов можно считать от-деление изоляции от проволоки механическим способом. С помо-щью грануляторов специальной конструкции удовлетворительно решена проблема отделения термоплавкой и резиновой изоляции. Установка пригодна для переработки проволоки, изолированной термопластом и бумагой. Установка не пригодна для некоторых типов проводов, изолированных хлопчатобумажной тканью, для табелей со свинцовой оболочкой и для всех сортов изоляции, которая прилипает к проводу так, что не отделяется от металла даже при очень тонкой грануляции. При переработке проводов, у кото-рых разделение изоляции и меди осуществляется удовлетвори-тельно и почти без потерь получается термопласт, последний может служить сырьем для изготовления менее ответственных дета-лей.

Если между проводами, изолированными термопластом, есть изоляция из ткани, ее можно удалить из смеси кусков меди и изоляции с помощью отсасывающего устройства. Эта установка за-крыта и механизирована, требует минимального обслуживания и обеспечивает производительность - 500 тонн изолированной про-волоки в год. При работе установки не загрязняется атмосфера, технология экономически более выгодна, чем обжиг изоляции в печах.

Переработку промышленных отходов производят на спе-циальных полигонах, создаваемых в соответствии с требованиями СНиП 2.01.28-85 и предназначенных для централизованного сбора обезвреживания и захоронения токсичных отходов промышленных предприятий, НИИ и учреждений.

ВЫВОДЫ

В дипломной работе рассмотрены следующие проблемы:

воспроизведен метод расчета вероятностей повышения (понижения САЛК), а также принятия решения в соответтствии с теорией Байеса;

собраны необходимые реальные данные для расчета;

эти данные расширены для корректного воспроизведениия метода расчета вероятностей повышения (понижения САЛК);

решена основная поставленная задача: применен метод принятия решения на основе нечетких выводов;

проведен анализ полученных данных;

получены положительные результаты работы предложенного метода;

все результаты проанализированы;

результаты предложенного метода оказались лучше, система работает эффективнее.

В соответствии с полученными результатами можно сделать основной вывод: данный метод может применяться в реальных условиях при наличии соответтствующих данных, которые должны обновляться как можно более часто.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Догадушкин М.В. Разработка инструментов технического анализа для использования в режиме реального времени при торговле в сети Российской Торговой Системы и на мировых торговых площадках через сеть Интернет: Дис…канд. техн. наук - М., 2000 - 115 С.

2. Заде Л. Понятие лингвистической переменной и его применение к

принятию приближенных решений. - М.: Мир, 1976

3. Прикладные нечеткие системы / Пер. с япон. / К. Асаи, Д. Ватада. С. Иваи и др.; Под ред. Т. Тэрано, К. Асаи, М. Сугэно. - М.: Мир, 1993

4. Современные методы программирования в примерах и задачах. /Г.И.Светозарова, А.В.Козловский, Е.В.Сигитов - М.: Наука, 1995

5. Закарян И.О, Филатов И.В. Интернет как инструмент для финансовых инвестиций. - Санкт-Петербург, БХВ, 2000

6. Дараган В.А. Игра на бирже - М.: УРСС, 2002

7. Смирнов А.П. Надежность автоматизированных систем. - М.: МИСиС, 1991

8. С.Тейксейра, К.Пачеко Delphi 5. Руководство разработчика.- М.: Вильямс,2000

9. ГОСТ 12.0.003-74. ССБТ. Опасные и вредные производственные факторы. Классификация. - М.: Изд-во стандартов, 1975.

10. ГОСТ 12.1.005-88. ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны. - М.: Изд-во стандартов, 1991.

11. СНиП 23-05-95. Естественное и искусственное освещение /Минстрой России. - М.: ГП ЦПП, 1995. - 35 С.

12. Учебное пособие по разделам «Безопасность жизнедеятельности» и «Охрана окружающей природной среды» в дипломной работе. /И.В.Бабайцев, А.Н.Варенков, Е.П.Потоцкий, В.М.Корукова - Московский государственный институт стали и сплавов, 2000

13. Безопасность жизнедеятельности. Учебное пособие для выполнения домашних заданий. /Е.П.Потоцкий, Н.В.Гриценко, Н.В.Мануев - М: МИСиС, 1993

14. Технический анализ товарных и финансовых рынков, А.Эрлих, Москва, ИНФРА - М, 1996, 176с.

15. Основы биржевой игры, Учебное пособие для участников торгов на мировых биржах, А. Элдер, пер. с англ., Москва, Светочь, 1995, 280с.

16.Торговля ценными бумагами в сети Интернет, В.Беляев, ж. Рынок ценных бумаг №10, 1999, 13-14 с.с.

15.Торговля ценными бумагами в сети Интернет, В.Беляев, ж. Рынок ценных бумаг №11, 1999, 13-14 с.с.

16.Торговля ценными бумагами в сети Интернет, В.Беляев, ж. Рынок ценных бумаг №13, 1999, 24-25 с.с.

17.Торговля ценными бумагами в сети Интернет, В.Беляев, ж. Рынок ценных бумаг №15, 1999, 22-23 с.с.

18.Торговля ценными бумагами в сети Интернет, В.Беляев, ж. Рынок ценных бумаг №19, 1999, 19-20 с.с.

Array

Страницы: 1, 2


© 2010 Реферат Live